
CS 6210 notes

Shawn Ong

January 2022

1 Matrix Factorizations

(Reduced) SVD of A P Rmˆn is A “ UΣV T “
řℓ

i“1 σiuiv
T
i where (let ℓ “ minpm,nq):

• U P Rmˆℓ with UTU “ I and cols of U are left singular vectors

• V P Rnˆℓ with V TV “ I and cols of V are right singular vectors

• Σ P Rℓˆℓ diagonal

¨

˚

˝

σ1

. . .

σℓ

˛

‹

‚

with σ1 ě σ2 ě ¨ ¨ ¨ ě σℓ ě 0.

Key facts about SVD:

• Always exists

• }A}2 “ σ1

• }A}F “ p
ř

i σ
2
i q

1{2

• rankpAq “ #σi ą 0

• ε- rankpAq “ #σi ą ϵσ1

• SVD yields “best approximations” i.e. for any i ď k ă ℓ, Ak “
řk

i“1 σiuiv
T
i is the best

rank-k approximation of A in } ¨ }2 or } ¨ }F .

2 More Related Factorizations:

Often square A P Rnˆn can be written as A “ XΛX´1 where X invertible and Λ diagonal. If
so, A is diagonalizable; columns of X are eigenvectors and entries of Λ are eigenvalues:

AX “ XΛ

Diagonalizable matrices dense, but we won’t work with JCF because not nice numerically -
not continuous in entries.

If A “ AT , then A can always be written as A “ V ΛV T with V orthogonal (V TV “ I) and
Λ diagonal, real-valued.

1

CS 5846

For any square matrix A, Schur form is A “ UTU˚ where U˚U “ I, T is upper triangular
and contains A’s eigenvalues on its diagonal. We often use it to reason about convergence.
For real A, real Schur form always exists – allow T to be block upper triangular; then version
with all real entries exists.

2

CS 5846

2 Floating point

We primarily work with real numbers, but in practice can only store finite info.

Solution: Floating point representations (essentially scientific notation). Issues:

(1) There are gaps between numbers we can represent.

(2) There exist a largest and smallest (nonzero) number we can store.

In this course, we largely focus on (1) and ignore (2). (2) is so-called overflow/underflow; but
for double precision floating point numbers, we can store approx 10´308 to 10308 so generally
not a huge issue. Avoid calculating determinants – could cause issues.

Idea of floating point: gaps between numbers are constant in a relative sense, i.e.:

1, 1 ` 2´52, 1 ` 2 ¨ 2´52, . . . , 2

2, 2 ` 2´51, 2 ` 2 ¨ 2´51, . . . , 4

Each interval r2j, 2j`1s has the same amount of numbers in it.

2.1 Idealized floating point:

Discrete subset F Ď R defined by integer β ě 2 (base) and by integer t ě 1 (precision).
Elements of F are:

t0u Y ˘

ˆ

m

βt

˙

βe

βt´1 ď m ď βt is called mantissa, e the exponent. In the idealized system, e is unbounded
(can’t be implemented in practice).

In practice, β “ 2 and for double precision, t “ 53. Also add bounds on exponent.

Double precision number takes 64 bits to store:

1 bit
loomoon

sign

11 bits
looomooon

exponent

52 bits
looomooon

mantissa

Numbers are stored as:

˘

˜

1 `

52
ÿ

i“1

mi2
´i

¸

2e

where mi P t0, 1u, ´1022 ď e ď 1023 and the extra 1 guarantees unique representation. Note
that e “ ´1023, 1024 are not used – they are reserved to encode special cases. Additionally,
we store 52 bits of mantissa, but the value t “ 53 (includes the additional guaranteed
1).

Key information: resolution of F is summarized by machine precision, defined as:

µ “
1

2
β1´t

3

CS 5846

i.e., half the distance between 1 and the next biggest number. E.g., for double precision,
µ « 10´16.

Let flpxq for x P R to be the closest floating point to x (round to nearest representation).
Then @x P R, Dε with |ε| ď µ such that flpxq “ xp1 ` εq.

2.2 Arithmetic with floating point numbers:

We use `,´,ˆ,˜ to represent “real arithmetic.” Let the circled versions of those same
symbols

À

,
Á

,
Â

,
Ã

represent “floating point arithmetic.”

Axioms:

x⊛ y “ flpx ˚ yq

In particular, for all x, y P F , there exists an ε with |ε| ď µ such that:

x⊛ y “ px ˚ yqp1 ` εq

2.3 Conditioning

Conditioning – property of problems. Accuracy/stability – property of algorithms.

Informally, a problem is a function f : X Ñ Y , where X is called the data/input space and
Y is called the output space (assume both normed). We typically study f at a specific x P X,
i.e. a problem instance (typically implicit). A well-conditioned problem is one where any
small change in x induces a small change in fpxq. Conversely, an ill-conditioned problem is
one where some small change in x induces a large change in fpxq.

We define the relative condition number of a problem f as follows:

κ “ lim
δÑ0

sup
}δx}ďδ

ˆ

}δf}{}fpxq}

}δx}{}x}

˙

where δf “ fpx ` δxq ´ fpxq. With some appropriate assumptions, this can be rewritten in
terms of the Jacobian as:

}Jpxq}

}fpxq}{}x}

Example: Subtraction fpxq “ x1 ´ x2, using } ¨ }8. Here, J “
“

1 ´1
‰

.

κ “
2

|x1 ´ x2|{maxtx1, x2u

As x1 Ñ x2, becomes increasingly ill-conditioned (as long as not both going to 0). Catas-
trophic cancellation: don’t try to calculate small numbers by subtracting 2 big ones.

4

CS 5846

Example: Solving linear systems Ax “ b. As a function, A, b ÞÑ x “ A´1b (assuming A
invertible).

Define the condition number of A as:

κ2pAq “ }A}2}A´1
}2 “

σ1

σn

, A P Rnˆn

Why? (consider only perturbations to A)

pA ` δAqpx ` δxq “ b

pδAqx ` Apδxq “ 0 (if we ignore small term δApδxq)

ùñ δx “ ´A´1
pδAqx

}δx} ď }A´1
} ¨ }δA} ¨ }x}

ùñ
}δx}{}x}

}δA}{}A}
ď }A´1

}}A} “ κ2pAq

2.4 Accuracy and Stability

Recall: a problem is a function f : X Ñ Y (assumed to be between normed vector spaces).
Today, we consider algorithms the same way. An algorithm for f is a similar map f̃ :
X Ñ Y . f̃ takes the “true” x as input; so includes x ÞÑ flpxq. General idea: f̃ represents
computation we can “actually do” – this includes its output being something we can express
on computer.

An algorithm f̃ is accurate if for every x P X:

ϕpµq “
}f̃pxq ´ fpxq}

}fpxq}
“ Opµq (as µ Ñ 0)

Intuitively, algorithm gets more precise as you increase machine precision. This particular
condition implies that Dc ą 0 s.t. for all sufficiently small µ, ϕpµq ď cµ. But actually, ϕ is
a function of both x, µ. So ϕpµq “ Opµq must be true uniformly in x, i.e., the constant c
doesn’t depend on x. But accuracy can be too restrictive – may not always been the best
goal.

An algorithm f̃ is stable if for all x P X,

}f̃pxq ´ fpx̃q}

}fpx̃q}
“ Opµq

for some x̃ with }x´x̃}

}x}
“ Opµq. Intuitively: gets “nearly” the correct answer to “nearly” the

correct question.

There is also a slightly stronger version: an algorithm f̃ is backwards stable if for all x P

X,
f̃pxq “ fpx̃q

5

CS 5846

for some x̃ with }x´x̃}

}x}
“ Opµq.

Example: our axiom for floating point arithmetic operations
À

,
Á

,
Â

,
Ã

implies that these
operations are backwards stable.

Theorem: (backwards stability ñ “accuracy,” in the form of relative error guarantees). If
f̃ is a backwards stable algorithm for f with condition number κ, then:

}f̃pxq ´ fpxq}

}fpxq}
“ Opκpxqµq

Colloquially, we “lose” κpxq accuracy. This is so-called backwards error analysis. Conversely,
we can perform forward error analysis; roughly, “track floating point errors through all op-
erations.”

6

CS 5846

3 Algorithms

First problem: Solving Ax “ b for nonsingular A. Our two main approaches:

• Direct methods: Finite sequence of steps yields a solution.

• Iterative methods: xpkq Ñ x as k Ñ 8.

We start with direct methods, but will spend more time on iterative methods eventu-
ally.

Our first method has 2 steps:

1. “factor” A into the product of matrices M1M2 (could be more than 2 matrices). where
the Mi are “easy” to solve Miy “ d.

2. Split the problem: Ax “ b ùñ M1M2x “ b. Solve M1y “ b for y and M2x “ y for x.

What kind of matrices M are easy to solve linear systems with?

(1) M is diagonal

(2) M is upper/lower triangular. Solve via forward substitution (costs Opn2q arithmetic
operations).

(3) Orthogonal matrices Q; since Qx “ b ùñ x “ QT b.

First algorithm is triangular factorizations. Gaussian elimination:

A “ LU

We accomplish this by constructing a sequence of lower triangular matrices L1, . . . , Ln´1

such that:
Ln´1 . . . L2L1A “ U

Since the product of lower triangular matrices is lower triangular, we have L´1A “ U ; the
inverse of lower triangular nonsingular matrix is also lower triangular. This gives A “ LU .
Luckily, the process by which we generate the Li makes inversion simple. Each Li will
make A upper triangular one column at a time. L1 makes the first column of A upper
triangular:

¨

˚

˚

˚

˚

˚

˚

˝

x x x

x
. . .

...
...

...
...

...
x x

˛

‹

‹

‹

‹

‹

‹

‚

L1
ùñ

¨

˚

˚

˚

˚

˚

˚

˝

x x x

0 x . . .
...

...
...

. . .
...

...
...

0 x

˛

‹

‹

‹

‹

‹

‹

‚

L2
ùñ . . .

Ln´1
ùñ

¨

˚

˚

˚

˚

˚

˚

˝

x x x

0 x . . .
...

0 0 x . . .
...

...
...

. . .
...

0 x

˛

‹

‹

‹

‹

‹

‹

‚

We need Li to be “easy” to compute and invert, and want Lk to be such that for some vector

7

CS 5846

zk “

ˆ z1k
...

znk

˙

:

Lkzk “

¨

˚

˚

˚

˚

˚

˚

˚

˝

z1k
...
zkk
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‚

Let ℓj,k “
zjk
zkk

for j ą k. We build our matrix by defining ℓk “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0
...
0

ℓk`1,k
...

ℓn,k

˛

‹

‹

‹

‹

‹

‹

‹

‚

. This allows us to

define:

Lk “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0

´ℓ2,1
. . .

...
... 1

...
... ´ℓk`1,k

. . .
...

...
... 0

´ℓn,1 . . . ´ℓn,k 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

We can also write this more concisely as:

Lk “ I ´ ℓke
T
k

Note that if we can correctly identify zk, this matrix easy to compute. Even better, this is
easy to invert:

L´1
k “ I ` ℓke

T
k

Additionally, we don’t care about calculating individual Li. We seek L “ L´1
1 L´1

2 . . . L´1
n´1:

L´1
1 L´1

2 . . . L´1
n´1 “ I `

n´2
ÿ

k“1

ℓke
T
k

Where additional terms drop out because the ℓnek “ 0 for n ą k. This ends up yielding:

L “

¨

˚

˚

˚

˝

1 0 . . . 0

ℓ2,1 1
...

...
. . .

...
ℓn,1 . . . ℓn,n´1 1

˛

‹

‹

‹

‚

With this, we can now provide an algorithm that computes LU factorization, assuming one
exists.

8

CS 5846

Algorithm 1 Gaussian Elimination

Set L “ I, U “ A.
for k “ 1, . . . , n ´ 1 do

Lpk ` 1 : n, kq “ Upk ` 1 : n, kq{Upk, kq Ź Compute L
Upk ` 1 : n, k : nq “ Upk ` 1 : n, k : nq ´ Lpk ` 1 : n, kqUpk, k : nq Ź Lk “ I ´ ℓke

T
k

end for
Return L,U

Gaussian Elimination/LU without pivoting

Analyze the algorithm: How efficient is it (in terms of floating-point operations) and how
stable is it?

• Takes Opn3q floating point operations („ 2
3
n3).

• Stability: This doesn’t work for matrices, e.g.

ˆ

0 1
1 1

˙

. Problem persists even if not

dividing by 0.

Example Consider A “

ˆ

10´20 1
1 1

˙

. In exact arithmetic, we have:

L “

ˆ

1 0
1020 1

˙

U “

ˆ

10´20 1
0 1 ´ 1020

˙

Say that in floating point, 1 ´ 1020 rounds to ´1020 (since precision is on the order of
10´16).

L̃ “

ˆ

1 0
1020 1

˙

Ũ “

ˆ

10´20 1
0 ´1020

˙

But L̃Ũ “

ˆ

10´20 1
1 0

˙

. So stability issues here; this can also affect things like solving linear

system with L̃, Ũ .

We’ll ask for better properties on L,U (by convention, these are imposed on only L):

1. Force L to have unit diagonal.

2. Force |ℓij| ď 1.

Recall ℓjk “
zjk
zkk

– we have issues when zjk is large relative to zkk. To fix, we observe that we
can permute rows of A without affecting the method, but changing the resulting numbers.
To account for that, before we apply each Li, permute the rows so that the largest entry
appears on the “top” row. This so-called “partial pivoting” ensures that every entry of Li

is ď 1.

Note that this procedure computes:

Ln´1Pn´1 . . . L2P2L1P1A “ U

9

CS 5846

It is not immediately obvious that this collapses nicely into L´1P . Then PA “ LU (per-
muted/pivoted LU decomposition).

Suppose we have L3P3L2P2L1P1A “ U . We simplify by introducing additional permutations
to collect them to the right.

L3P3L2P2L1P1A “ U

L3P3L2P2L1pP
´1
2 P´1

3 P3P2qP1A “ U

L3P3L2pP
´1
3 P3qP2L1pP

´1
2 P´1

3 P3P2qP1A “ U

L3pP3L2P
´1
3 qpP3P2L1P

´1
2 P´1

3 qpP3P2P1qA “ U

L1
3L

1
2L

1
1PA “ U

For each L1
i, note that permutation indices Pn satisfy n ą i. In particular, they only permute

entries below the diagonal, and therefore maintain lower triangular property. Applying the
inverses doesn’t affect the leading columns, and exactly undoes the permutations – results
in still lower triangular matrix with unit diagonal.

For every nonsingular A, there is a PA “ LU decomposition that satisfies our desired
properties.

Thus, given non-singular A P Rnˆn, compute:

1. Permutation matrix P .

2. Lower triangular L with ℓij ď 1, ℓii “ 1.

3. Upper triangular U .

such that PA “ LU .

Algorithm: LU factorization with partial pivoting (store permutation P as vector, L + U
“in place” – don’t need to store ℓii, as these are all 1).

1. w.r.t. column 1, swap the first row containing the row with the largest entry.

Algorithm 2 LU with Partial Pivoting

for k “ 1, . . . , n ´ 1 do
Find j with k ď j ď n s.t. |Apj, kq| “ maxkďℓďn |Apℓ, kq|

Pivpkq “ j Ź Encoding P
Apk, :q Ø Apj, :q Ź Swap rows
η Ð k ` 1 : n Ź Abbreviation for conciseness
Apη, kq “ Apη, kq{Apk, kq Ź “Compute” Lk

Apη, ηq “ Apη, ηq ´ Apη, kqApk, ηq Ź Apply Lk

end for

Cost is still „ 2
3
n3 flops (increased overhead in permutations, but not floating-point opera-

10

CS 5846

tions). Once finished, A has the form:

A “

¨

˚

˚

˚

˝

u11 u12 . . . u1n

ℓ21 u22
...

...
. . .

...
ℓn1 . . . ℓn,n´1 unn

˛

‹

‹

‹

‚

We call this algorithm partial pivoting since we are looking only at entries of (part of) a
single column when pivoting. We can do better by considering instead a submatrix, finding
the largest element, then permuting both row and column to move the largest entry to
its top left. This gives us LU with complete pivoting, and yields PAQ “ LU (P for row
permutations, Q for column permutations).

Given A, b, how to solve Ax “ b?

1. Compute PA “ LU in Opn3q. Then PAx “ Pb ùñ LUx “ Pb.

2. Solve Ly “ Pb for y in (Opn2q, since L lower triangular).

3. Solve Ux “ y for x in Opn2q.

Observe that the dominant cost is in step 1, solely dependent upon A. Suppose we fix A
and change b; don’t need to re-solve for A after the first time for lower cost.

Theorem 1 (Stability of backward/forward substitution.). Suppose we solve Ux “ b via
backwards substitution for upper triangular U , with solution x̃. Then x̃ satisfies pU`δUqx̃ “ b

for some upper triangular δU with }δU}

}U}
“ Opµq, i.e. alg is backwards stable. In fact, we can

even guarantee
|δUij |

|Uij |
ď nµ ` Opµ2q (entrywise stability, incurring cost of nµ).

Theorem 2. Given A, if A has an LU factorization A “ LU , then for all sufficiently small
µ, the algorithm completes (i.e. no zero division). The computed L̃, Ũ satisfy: L̃Ũ “ A` δA

with }δA}

}L}}U}
“ Opµq.

For PA “ LU (partial pivoting), we know }L} “ Op1q so }δU}

}U}
“ Opµq. This ends up true

for complete pivoting as well.

This motivates the growth factor ρ in PA “ LU is the following:

ρ “
maxij |uij|

maxij |aij|

Theorem 3 (Stability of partial pivoted LU .). If PA “ LU , with computed P̃ , L̃, Ũ , then
for all sufficiently small µ, if no “ties” in true pivoting, P “ P̃ and L̃Ũ “ P̃A ` δA with
}δA}

}A}
“ Opρµq.

If we can come up with a reasonable bound for ρ, this is basically backwards stability. So
next question is how big can ρ be? For partial pivoting, worst case ρ “ 2n´1. Note that this
technically independent of A, but not good – pathological dependence on dimension.

11

CS 5846

For complete pivoting, ρ ď
?
n

`
śn

ℓ“2 ℓ
1{pℓ´1q

˘

« n
1
2

`log n
4 .

4 Error bounding

We use this technique to solve, for example, Ax “ b via PA “ LU to obtain some x̃ « A´1b.
Recall that we have relative error }x´x̃}2

}x}2
. This is a reasonable error measurement, although

we do not always know x. Instead seek an error bound based on quantities that are “always
computable.” One way to see how good x̃ is is to compute residual vector r “ b ´ Ax̃ and
consider }r}2 – how well does x̃ satisfy the equation we want it to?

Note that this is not scale invariant – multiplying A, b by c increases r as well. To fix this,
we instead consider relative residual ρ “

}b´Ax̃}2

}A}2}x̃}2
.

Lemma 4. Motivation: ρ “ minδA

!

}δA}2

}A}2
: pA ` δAqx̃ “ b

)

Proof omitted (in textbook).

This lemma implies a bound on the forward error }x´x̃}

}x}
ď κpAqρ.

This type of bound is useful for iterative algorithms, where we repeatedly compute until we
get “close enough” – this provides a metric for how close we are.

Alternatively, we can consider a relative metric }b´Ax̃}2

}b}2
“ ϵ. This doesn’t provide a good

bound on backwards error like above, but does provide a relative forward error bound
}x´x̃}2

}x}2
ď κpAqϵ.

12

CS 5846

5 Triangular factorizations with specific structure

Given “structured” A, what to do? E.g. A is symmetric positive definite. Seems reasonable
that we can try something like LU but take advantage of the symmetry to avoid solving for
both matrices. Additionally, we will be able to achieve good stability without permuting
P .

Suppose we have A P Rnˆn symmetric positive definite, i.e. xTAx ě 0 for all x and 0 iff
x “ 0; equivalently, all positive eigenvalues. Then there always exists upper triangular R
such that A “ RTR, the so-called Cholesky decomposition. If all rii ą 0, this is unique.
Sometimes written LLT with L lower triangular.

Existence and algorithm: Let A be as follows:

A “

ˆ

α11 wT

w K

˙

˜

α11 wT

w K

¸

where α11 P R, w P Rn´1, K P Rpn´1qˆpn´1q. We claim that we can reduce similarly to before,
by one column at a time.

A “

ˆ ?
α11 0

w{
?
α11 I

˙

˜

1 0

0 K ´ wwT

α2
11

¸

ˆ?
α11 wT {

?
α11

0 I

˙

Or succinctly, RT
1 pR´T

1 AR´1
1 qR1.

Suppose that K ´ wwT

α11
is symmetric positive definite (induction argument). 1ˆ1 spd matrix

has a Cholesky decomposition (just take the square root). So claim that K ´ wwT

α11
“ R̂T R̂.

Then we can write:

A “

ˆ ?
α11 0

w{
?
α11 I

˙ ˆ

1 0

0 R̂T R̂

˙ ˆ?
α11 wT {

?
α11

0 I

˙

This implies we can rewrite A as:

A “

ˆ ?
α11 0

w{
?
α11 R̂T

˙ ˆ?
α11 wT {

?
α11

0 R̂

˙

Couple notes to check: we took
?
α11. Note that this is always possible since spd A must

have positive diagonals: eTi Aei “ αii and this quantity must be strictly positive. The other

thing to check is that K ´ wwT

α11
has a Cholesky decomposition, i.e. it is spd. Symmetry is

immediate: K and wwT are both symmetric. Observe that R´T
1 AR´1

1 “

˜

1 0

0 K ´ wwT

α2
11

¸

.

But this is also spd:
xT

pR´T
1 AR´1

1 qx “ pxTR´T
1 qApR´1

1 xq ě 0

13

CS 5846

with equality only if R´1
1 x “ 0; since R is invertible, this requires x “ 0.

For implementation, textbooks useful reference for exact expression w/ indices.

Cost to compute R is „ 1
3
n3.

Stability? Do we have issues with entries getting too large? Here, note that }R}2 “ }RT }2 “

}A}
1{2
2 (to prove this, use SVD of R). So when A is spd, our previous LU bound }δA}

}L}}U}
is

essentially just }δA}

}A}
; bounds on our growth factors for spd matrices.

Theorem 5. Given A spd, compute Cholesky decomposition R̃. Then R̃ satisfies R̃T R̃ “

A ` δA, with }δA}

}A}
“ Opµq.

Proof is essentially using the error analysis from LU and the above bound on }R̃}.

Note: One of the more efficient ways to check that a matrix is spd is to attempt to compute
Cholesky. If we take square root of a negative number, we know it is not spd; otherwise, we
obtain a Cholesky factorization so our matrix is spd.

Theorem 6. Solve Ax “ b for spd A via Cholesky decomposition, i.e. factor A “ RTR and
solve RTy “ b, Rx “ y on triangular matrices. Then x̃ satisfies pA ` δAqx̃ “ b for some δA

with }δA}

}A}
“ Opµq.

Note that we never gave bound on distance between R̃ and actual solution R – we don’t need
it to solve this linear system. If actual Cholesky is required, the forward error bound is not
so nice. We will see an analogue of this result for pivoted LU in homework – the backward
error bound proof will be cleaner than the direct forward error analysis.

So far, we have examined triangular factorizations (potentially with permutations). These
factorizations have some limits. Now, we consider factorizations including orthogonal ma-
trices (as well as triangular). This will allow us to solve a broader class of problems, in
particular, least squares problems.

14

CS 5846

6 Orthogonal Matrices

Small linear algebra warmup: projection matrices/projectors. An n ˆ n matrix P is a
projector iff P 2 “ P . Additionally, if P “ P T as well (or P “ P ˚ for complex), then P is an
orthogonal projector. In this class, we assume all projectors are orthogonal (refer to oblique
projectors otherwise). Note that orthogonal projectors are not orthogonal matrices (other
than identity).

Key idea: P projects vectors v onto rangepP q. P takes v to Pv (closest point to v on
rangepP q; vector Pv ´ v is orthogonal to rangepP q. This fact implies that Pv is the closest
(in } ¨ }2) point to v in the range of P . Observe also that if x P rangepP q, Px “ x.

Note that given an orthogonal projector P , then I ´ P is the orthogonal projector onto
rangepP qK (orthogonal complement). Observe that P pI ´ P q “ P ´ P 2 “ 0. Additionally,
we have yTP rpI ´ P qxs “ 0: y captures every element of the range of P , and x captures
every element in the range of I ´P ; any such pair of vectors Py and pI ´P qx are orthogonal
(substituting P “ P T in the above expression). Thus, we can decompose any vector x P Rn

as pPxq`pI ´P qx – projector divides space into everything on P and everything orthogonal
to it (and the latter is defined implicitly). Moreover, }x}22 “ }Px}22 ` }pI ´ P qx}22 (via
orthogonality).

Given a subspace we care about, how can we build an orthogonal projector onto it?

1. Compute an orthonormal basis q1, . . . , qk for the subspace. Let Q “

¨

˝ q1 q2 . . . qn

˛

‚

(matrix with orthonormal columns).

2. P “ QQT is the orthogonal projector onto rangepQq. Easy to check that P 2 “ P and
P T “ P . It turns out that this is the unique projector (regardless of choice of Q); we can
thus reason about subspaces with unique object.

Given a general basis, we can compute the orthogonal projector by converting first to or-
thonormal basis.

This leads us to (one-sided) orthogonal factorizations. For now, we first focus on the so-
called QR factorizations. Given any a P Rmˆn with m ě n, there exist matrix Q P Rmˆn

with orthonormal columns and upper triangular matrix R P Rnˆn such that A “ QR. This
is the (reduced) QR factorization of A.

Key points: The factorization is not unique. But there are certain structural assumptions
that restrict the degrees of freedom, so the set of possible factorizations is small; the “lack of
uniqueness” ends up not really mattering. If A has full column rank, then R is nonsingular
(and vice versa).

Side note: A “full” QR of A with m ě n is (some books will just call this QR decomposi-
tion):

A “ QR where Q P Rmˆm satisfies QTQ “ I and R P Rmˆn and the upper n ˆ n submatrix

15

CS 5846

is upper triangular (and all 0’s below it).

If A P Rmˆn with n ě m, then the factorization is A “ QrR1 R2s where Q P Rmˆm and
QTQ “ I, R1 P Rmˆm is upper triangular, and R2 P Rmˆpn´mq and is dense.

We will see algorithms shortly; but first motivation via applications.

What can we do with QR?

If m “ n, we can solve linear systems: Solve Ax “ b via A “ QR ùñ QRx “ b, so
Rx “ QT b and solve for x with upper triangular R.

If m “ n, we can use QR as a tool in eigenvalue algorithms.

If m ą n and we want to solve minx }Ax ´ b}22 (least squares problem). This can also be
written

řm
i“1pa

T
i x ´ biq

2 (sum of losses).

In general, how do we solve least squares?

1. “First” choice: solve minx x
TATAx ´ 2xTAT b ` bT b. Last term is constant in x so

we can drop it; solve for stationary point by solving where gradient “ 0. Gradient
w.r.t. x gives AtAx “ AT b, with Hessian ATA. If A is full column rank, then ATA is
spd and therefore nonsingular; stationary point is unique and a minimizer. So we can
solve by finding the stationary point (e.g. with Cholesky). This is called solving the
normal equations (the equations which arise from ATAx “ AT b). In general, don’t do

this – squares the condition number of A: κpATAq “ κpAq2 (can see via SVD).

2. This problem is essentially “find the closest point in rangepAq to b.” From before, if P
is orthogonal projector onto rangepAq, then closest point is Pb. If we have factorization
A “ QR, then P “ QQT (assuming full column rank). Thus minx }Ax ´ b}22 simplifies
to finding x such that Ax “ QQT b. Then QRx “ QQT b so QpRx´QT bq “ 0, which is
true iff Rx “ QT b. When A full column rank, this is n ˆ n non-singular linear system
and we can solve for x.

3. If A “ UΣV T is reduced SVD, follow same strategy as above option. Left singular
vectors gives basis for rangepAq. Ax “ UUT b ùñ UΣV Tx “ UUT b ùñ ΣV Tx “

UT b. Again end up with nonsingular matrix and solve like above.

Generally speaking, normal equations is fastest, SVD is most stable, and QR is nice middle
ground (most commonly used in practice). SVD may be better when rank-deficient.

16

CS 5846

7 Computing QR factorizations

We assume A P Rmˆn with m ě n, and assume A is full column rank. We want A “ QR
with Q P Rmˆn with orthonormal columns, R P Rnˆn upper triangular.

For LU, we started with A and found nice Li to slowly make it upper triangular. Our
procedure here will be similar in spirit.

First method is triangular orthogonalization, i.e. build R1, . . . , Rn upper triangular such
that AR1 . . . Rn “ Q.

Second method is orthogonal triangularization. Qn . . . Q1A “ R where each Qi is orthogo-
nal.

Triangular orthogonalization

Observation: If A “ QR

¨

˝ a1 a2 . . . an

˛

‚“

¨

˝ q1 q2 . . . qn

˛

‚

¨

˚

˚

˚

˝

r11 r12 . . . r1n
r22 . . . r2n

. . .
...

rnn

˛

‹

‹

‹

‚

We know a1 “ q1r11; note that for a single vector to satisfy orthonormality, we need }q1} =
1. This means that q1 “ a1

}a1}2
ùñ r11 “ ˘}a1}2.

Similarly, a2 “ q1r12 ` q1r22. In particular, this implies that q2 must be in spanta2, q1u:
a2 ´ q1r12 “ q2r22. But q1 is in the span of a1 (as it’s a scalar multiple). So in particular, qi
is in the span of taj : j ď iu and spanta1, . . . , aju “ spantq1, . . . , qju.

We use projectors to make this procedure more clear and improve numerical stability. Let
Pi “ qiq

T
i (easy to check this is projector). When we go from ta1, . . . , aju to ta1, . . . , aj`1u,

need to find qj`1 orthogonal to all previous vectors. We know qj`1 is in the span of
ta1, . . . , aj`1u, perpendicular to q1, . . . , qj, and normalized.

For any v,
´

I ´
řj

i“1 Pi

¯

v is orthogonal to q1, . . . , qj (orthogonal projector onto comple-

ment). To keep the spans the same, take v “ aj`1.

General idea (3):

We can make the actual internal calculations more explicit. For our actual factorization, we
end up with (4):

Potential issue – Gram-Schmidt is unstable. Suppose A is ill-conditioned. At some point,

aj «

´

řj´1
i“1 Pi

¯

aj. We subtract two quantities that are close together (but not necessarily

small), which allows the condition number to blow up. In practice, re-ordering the columns
for projection order makes this better (full explanation in Demmel).

17

CS 5846

Algorithm 3 Gram-Schmidt (simplified)

Take q1 Ð a1
}a1}2

for j “ 2, . . . , n do

vj Ð

´

I ´
řj´1

i“1 Pi

¯

aj

qj Ð
vj

}vj}2

Pj Ð qjq
T
j

end for

Algorithm 4 Gram-Schmidt (complete)

for j “ 1, . . . , n do
vj Ð aj
for i “ 1, . . . , j ´ 1 do

rij Ð qTi aj
vj Ð vj ´ rijqi

end for
rjj Ð }vj}2
qj Ð vj{rjj

end for

To fix this, we replace the vj assignment by the applying the projections successively:

vj “ pI ´ Pj´1q . . . pI ´ P1qaj

Since projections are onto orthogonal ranges, any pairwise or greater product is 0. This gives
a mathematically equivalent result.

Intuitions: The absolute differences are not as large as with the product of the combined
sum. Additionally, each of the vectors remains small at each step, so less likely to be ill-
conditioned. The errors at each projection are “roughly orthogonal” – can possibly cancel
out.

Algorithm 5 Modified Gram-Schmidt (complete)

for j “ 1, . . . , n do
vj Ð aj

end for
for i “ 1, . . . , n do

rii Ð }vi}2
q1 Ð vi{rii
for j “ i ` 1, . . . , n do

rij Ð qTi vj
vj Ð vj ´ rijqi

end for
end for

The contents of the inner for loop essentially apply pI ´ qiq
T
i q to vi`1, . . . , vn.

18

CS 5846

Consider how our procedure builds R:

¨

˝ a1 a2 . . . an

˛

‚

¨

˚

˚

˚

˝

r̃11 r̃12 . . .
0 r̃22 . . .

0 0
. . .

0 0 w

˛

‹

‹

‹

‚

“

¨

˝ q1 q2 . . . qn

˛

‚

In essence, we are building R´1 one column at a time.

Both Gram-Schmidt and modified Gram-Schmidt run in „ 2mn2 flops.

If n ą m, this process will break down – at some point, we will find a column in the span
of previous vectors. This gives the factorization QrR1 R2s where R1 is upper triangular and
R2 is dense. In this case, runtime is 2m2n; so we may see overall runtime abbreviated as
2mnmintm,nu flops.

Orthogonal triangularization

Now we construct Q1, . . . , Qn orthogonal matrices such that:

Qn . . . Q1A “ R

Note that Qi are all m ˆ m, so computed R̃ is m ˆ n upper triangular. This means that for
A “ Q̃R̃, we “reduce” by only keeping the first n columns of Q̃ “ QT

1 . . . QT
n .

Broad idea is to follow same idea as with LU.
¨

˚

˚

˚

˚

˚

˚

˝

x x x

x
. . .

...
...

...
...

...
x x

˛

‹

‹

‹

‹

‹

‹

‚

Q1
ùñ

¨

˚

˚

˚

˚

˚

˚

˝

x x x

0 x . . .
...

...
...

. . .
...

...
...

0 x

˛

‹

‹

‹

‹

‹

‹

‚

Q2
ùñ . . .

Qn
ùñ

¨

˚

˚

˚

˚

˚

˚

˝

x x x

0 x . . .
...

0 0 x . . .
...

...
...

. . .
...

0 x

˛

‹

‹

‹

‹

‹

‹

‚

How do we ensure that our Qi’s don’t mess up previous elements? Idea: Make Qi’s block
diagonal:

Qi “

ˆ

I
Fi

˙

Where I is the pi ´ 1q ˆ pi ´ 1q identity matrix. Note that this preserves our established
columns. Key observation: If Fi is orthogonal, then so is Qi.

How to find Fi? Given a vector x, construct F such that

Fx “

¨

˚

˚

˚

˝

˘}x}2

0
...
0

˛

‹

‹

‹

‚

“ ˘}x}2e1

19

CS 5846

Since orthogonal matrices preserve norm. For now, we assume that we pick the positive
option (algorithm will eventually dynamically pick).

We want to send x to }x}2e1. Consider the vector representing this action and the space
of everything perpendicular to this vector p}x}2e1 ´ xqK. Then }x}2e1 is the reflection of x
over this space. Note that we are not viewing orthogonal matrix as rotations here, since it
may be difficult to compute the necessary angles in higher dimensions. But the reflection
generalizes nicely, as we use projectors.

Let v “ }x}2e1 ´ x. Note that v is twice the projection from x onto the orthogonal space H;

i.e., F “ I ´ 2vvT

vT v
(Householder reflector).

Recall that last time, for A P Rmˆn we want to find Qi m ˆ m orthogonal with:

Qn . . . Q1A “

„

R
0

ȷ

We take each Qi “

ˆ

I
Fi

˙

where I is pi ´ 1q ˆ pi ´ 1q and Fi is n ´ pi ´ 1q ˆ n ´ pi ´ 1q.

If Fi is orthogonal, then so is Qi.

Given a vector x, we wish to construct F such that:

Fx “

¨

˚

˚

˚

˝

˘}x}2

0
...
0

˛

‹

‹

‹

‚

“ ˘}x}2e1

In 2-D, we can think about rotating x until it reaches the x-axis. However, this rotation
method along unit sphere does not generalize well to higher dimensions. Instead, we appeal
to a different type of orthogonal matrix: reflection matrix.

Take H to be the hyperspace perpendicular to v “ }x}2e1 ´ x (vector sending x to }x}2e1).
Note then that reflecting x over H gives }x}2e1.

A reflection can be performed by first projecting x onto H; then repeating this procedure
from the projected point.

When we normalize v, we can write the projector onto the space H by I ´ vvT

vT v
(following

I ´ QQT notation, with normalized v). So take:

pI ´
vvT

vTv
qy

looooomooooon

project y onto H

´
vvT

vTv
y

loomoon

Keep going same amount

so F “ pI ´ 2vvT

vT v
with v “ }x}2e1 ´ x is known as Householder reflector.

Note that we can repeat this same procedure with ´}x}2e1 instead. Note that, depending

20

CS 5846

on our choice, v looks like:

v “

¨

˚

˚

˚

˝

˘}x}2 ´ x1

´x2
...

´xn

˛

‹

‹

‹

‚

Note that we may lose precision when ˘}x}2 « x1 (subtracting two numbers very close to
each other). So we pick the option that reduces this error – if x1 « }x}2, take ´}x}2e1 and
vice versa. Essentially pick the ˘ sign to match x1 and avoid cancellation – geometrically,
we reflect based on the point which is further away.

v “ signpx1q}x}2e1 ` x

Algorithm 6 Householder QR

for k “ 1, . . . , n do
x Ð Apk : m, kq

Vk Ð signpx1q}x}2e1 ` x
Vk “ Vk{}Vk}2

Apk : m, k : nq “ Apk : m, k : nq ´ 2VkpV T
k Apk : m, k : nqq

end for

At completion, we have A “

„

R
0

ȷ

and “store” Qi implicitly via Vi `Qi “ pI ´ 2ViV
T
i q. Then

Q in the QR factorization is: Q “ QT
1 ¨ ¨ ¨QT

n . Note that we don’t particularly need to solve
for Q; just need a way to apply it. Alg to compute QT b:

for k “ 1, . . . , n do
bpk : mq “ bpk : mq ´ 2VkpV T

k bpk : mqq

end for

This result is m ˆ 1; just keep the first n entries. Similarly, to compute Qx:

for k “ n, . . . , n ´ 1 do
xpk : mq “ xpk : mq ´ 2VkpV T

k xpk : mqq

end for

Also note that eachQi is symmetric, soQT
i “ Qi (and the transposes will often be dropped).

Theorem 7. Stability of Householder QR for complete QR factorization of A P Rmˆn (as-

sume m ě n). Suppose we compute this and store computed vectors Ṽk and

„

R̃
0

ȷ

(in partic-

ular, store Ṽk and not Q̃. Then we have backwards stability:

Q̃R̃ “ A ` δA

with }δA}

}A}
“ Opµq, where Q̃ “ Q̃T

1 ¨ ¨ ¨ Q̃T
n and Q̃k is the exact Householder reflector induced

by Ṽk:

Q̃k “

˜

I 0

0 I ´ 2
ṼkṼ

T
k

Ṽ T
k Ṽk

¸

21

CS 5846

Note that this is not necessarily orthogonal when computed; thus, the need to take Q̃i to
be exact Householder reflectors. In practice, this isn’t too bad because we’re not storing Q
anyways.

Say we have a matrix:

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x x

x x
...

0 x
...

... 0
. . .

...
...

...
0 x

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

e.g. ith column only has i ` 1 nonzero entries.

Computing QR with Householder seems to do a lot of work when we only need to introduce
a single 0 in each column. Better to strategically replace 0’s with row operations (as each
such operation is more efficient than Householder operation), even though in worse matrices,
can go up to n2 Qi’s in general.

Suppose our matrix looks like:

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x x x

0
...

...
...

...
...

x
...

0
...

...
...

0 x

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

We build an orthogonal matrix:
¨

˚

˚

˝

c s
I

´s c
I

˛

‹

‹

‚

where c “ cos θ and s “ sin θ to zero out Apj, iq. More generally, define the so-called Givens
rotation:

¨

˚

˚

˚

˚

˝

I
c s

I
´s c

I

˛

‹

‹

‹

‹

‚

in rows/cols i, k, c “ cos θ, s “ sin θ. GT rotates that ik plane by θ counterclockwise. How

22

CS 5846

do we pick θ? Need c, s such that:

ˆ

c s
´s c

˙T ˆ

a
b

˙

“

ˆ

˘r
0

˙

where r “ a2 ` b2. Since we work with explicit 2 ˆ 2, can actually compute:

c “
a

?
a2 ` b2

s “
´b

?
a2 ` b2

But like with Householder, want to be slightly careful with our choices (based on whether
|a| ą |b|).

In practice:

if b “ 0 then
c Ð 1, s Ð 0

else if |b| ą |a| then
τ Ð ´a

b
, s Ð 1?

1`τ2
, c Ð sτ .

else
τ Ð ´b

a
, c Ð 1?

1`τ2
, s Ð cτ .

end if
return c, s

Upcoming topics:

• Sensitivity of LS (least squares)

• Rank-deficient LS (and rank-deficient problems in general)

23

CS 5846

8 Conditioning of LS

More complex than m “ n, non-singular systems. When b not in rangepAq, we solve for x
such that Ax is the point in rangepAq closest to b. Now consider what happens when we
perturb b. Before, square nonsingular matrices produced exact solution for b, so no real issue
occurred.

Now, when we perturb b, there are two effects: the point in the range of A changes; as this
changes, so too does the x. This ends up being not too bad. Now consider if we perturb
A. Before, perturbing A is fine as long as we keep it nonsingular. Again, it affects both the
closest point to b as well as the x used to get there.

Denote y “ Ax (the point closest to b). We consider (relative) condition number κ of y, x
w.r.t. δA, δb (not perturbed simultaneously).

y x

b
1

cospθq

κpAq

η cospθq

A
κpAq

cospθq
κpAq `

κpAq2 tanpθq

η

where θ “ cos´1 }y}

}b}
(the angle between b and y) and η “

}A}}x}

}Ax}
(measures how big Ax

is compared to how big it can be; observe that 1 ď η ď κpAq). Informal proofs of these
available in Trefethen-Bau; more rigorous in GVL (notational differences too).

Theorem 8. Solve LS minx }b ´ Ax} via Householder QR (or with Givens rotations), i.e.,
compute A “ QR and solve Rx “ QT b. Then the computed x̂ minimizes }b ´ pA ` δAqx̂} “

min for some δA satisfying }δA}

}A}
“ Opµq.

This implies that using QR we get:

}x̂QR ´ x}

}x}
“ O

ˆˆ

κ `
κ2

η
tanpθq

˙

µ

˙

Compare to what we would get when solving with normal equations:

}x̂N ´ x}

}x}
“ Opκ2µq

So the question becomes when is this much worse than QR? That is, when is κ2

η
tanpθq close

to κ2? Typically solving with normal equations is worse; but how bad is it?

If b P rangepAq, tanpθq vanishes and we end up with κµ. On the other hand, when b close
to orthogonal to y, this term blows up. It turns out that this also results in a large blowup
when solving via normal equations (since we compute AT b).

24

CS 5846

We can write:

κ tanpθq

η
“

}A}2}A
´1}2}b ´ Ax}2

}Ax}2
ˆ

}Ax}2

}A}2}x}2

“
1

σn

ˆ
}b ´ Ax}

}x}

Observe that when the “mathematical residual” }b´Ax} is small, we are generally okay (this
matches with the intuition that we can solve well when b is in rangepAq). We can write in
terms of the SVD to shed some insight; let A “ UΣV T be the reduced SVD of A.

“
1

σn

ˆ
}pI ´ UUT qb}

}Σ´1UT b}

Intuitively, pI ´ UUT qb corresponds to “the part of b orthogonal to A”, and UT b (ignoring
the Σ´1 term) “the part of b in the range of A.”

ď κ ˆ
}pI ´ UUT qb}

}UUT b}

What happens if A is rank deficient?

A “

r
ÿ

i“1

σiuiv
T
i , m ě n, r ă n

What if A is even rank deficient when converted to floating point (not always mathematically
the case), and we don’t know beforehand that it is rank deficient? Say we compute SVD
of A and get σ̂i for i “ 1, . . . , n (computed singular values). Roughly |σ̂i ´ σi| ď µσ1,
i.e. all perturbations roughly on the order of the largest singular value. Indicates a global
relationship between singular values. Then σ̂r`1, . . . , σ̂n « µσ1 (so unlikely for them to be 0
and result to be singular). When plotting singular values, graph “bottoms out” at r, with
values approx 10´16.

Say A is rank-deficient. To fix a specific solution to minx }b´Ax}, take the one with smallest
norm x. We have a closed form expression for x in terms of SVD:

x “

r
ÿ

i“1

uT
i b

σi

vi

Solve like normal LS problem, just ignoring zero singular values of A. But the computed

x̂ “
řn

i“1
ûT
i b

σ̂i
v̂i – terms that didn’t appear before are now present; we’re additionally dividing

by σ̂’s – leads to potentially big errors when b has components in the directions of singular
vectors corresponding to value 0.

Instead, we replace the upper bound of sum with r̂, the “numerical rank” of A. This helps
reduce the error caused by the above summation. Consider:

Pick some δ ě 0 and let r̂ be s.t. σ̂1 ě ¨ ¨ ¨ ě σ̂r̂ δ ą σ̂r̂`1 ě ¨ ¨ ¨ ě σ̂n ě 0

25

CS 5846

Use x̂ “
řr̂

i“1
ûT
i b

σ̂i
v̂i

i.e. we explicitly discard small singular values. Note that this depends on our choice of δ
(one natural way is to make δ « µσ1 based on the above observation). In practice, people
don’t want to compute σ̂1 so use proxies, e.g. }A}8.

What can go wrong? What if r̂ ă r, and we end up throwing away singular values that are

nonzero. Consider “error” “
řr

i“r̂`1
uT
i b

σi
v (observe that we use exact values to make this

point, rather than comparing between exact and computed). We could have big errors if
uT
i b is significant. But we can roughly interpret as solving the problem minx }b ´ Ax}2 s.t.

}x} ě 1
δ
(i.e. put additional constraint on how big x can be).

26

CS 5846

9 Iterative methods

Still solving Ax “ b for A square, nonsingular. Before: we were computing e.g. A “ QR, to
find QT b and then solve Rx “ QT b. Note that this solution method uses a fixed number of
arithmetic operations in each step (which we can explicitly count). We can even give bounds
on how bad x̂ is compared to x.

Now: We construct a sequence xpkq P Rn such that xpkq Ñ x “ A´1b as k Ñ 8. In other
words, we construct a sequence of vectors that converges to the true answer.

We start by considering this problem with exact arithmetic; afterwards, we will reason about
the effects of floating-point.

Previous direct methods – no improvement until after fully factoring the matrix. So our
best guess is constant until this work is done, at which point the rror becomes κµ. On the
other hand, this new method allows us to converge over time – potentially even faster than
the Opn3q from before. Or perhaps we don’t need such a precise answer (e.g. measurement
uncertainty is higher than machine precision) so we can afford to stop early.

First class of methods: Stationary or Classical iterations.

Idea: Split A “ M ´ N for some M,N with M nonsingular. Iteration defined as Mxpkq “

Nxpk´1q ` b given some xp0q. Observe that plugging in x yields x as a valid solution.

Note that with this method, we want M to be “easy” to solve linear systems with. Addi-
tionally, we want this method to converge.

Observe that Mx “ Nx ` b for x “ A´1b. We can take epkq “ x ´ xpkq so that:

Mpx ´ xpkq
q “ Npx ´ xpk´1q

q ùñ Mepkq
“ Nepk´1q

ùñ epkq
“ M´1Nepk´1q

If we call G “ M´1N the “iteration matrix,” we can unroll iteration:

epkq
“ Gkep0q

For any induced norm:

}epkq
} “ }Gkep0q

} ď }Gk
}}ep0q

} ď }G}
k
}ep0q

}

So if }G} ă 1 for some induced (or sub-multiplicative) norm, this iteration converges. Key
quantity to dictate convergence is spectral radius ρpGq.

Theorem 9. Suppose A “ M ´ N with M nonsingular. Then the iteration Mxpkq “

Nxpk´1q ` b converges for all xp0q iff ρpGq ă 1, where G “ M´1N .

Proof. Assume ρpGq ě 1 and pick xp0q such that ep0q is an eigenvector of G with eigenvalue
|λ| “ ρpGq. Then epkq “ λkep0q; when |λ| ě 1, does not converge.

For all G, ϵ there exists sub-multiplicative norm } ¨ }s such that }Gk}s ď cϵ,GpρpGq ` ϵqk. If
ρpGq ă 1, we can pick ϵ such that the base of exponent is as well; then }G}ks Ñ 0 so norm
of error for any initial guess goes to 0 as well.

27

CS 5846

Say G “

ˆ

λ α
λ

˙

. Then Gk “

ˆ

λk αλk´1

λk

˙

. So even if the eigenvalues are small, behavior

depends on α at low iterations – could potentially have worse error early. Eigenvalues do not
tell the entire story for non-normal G. Here, we say A is normal if ATA “ AAT (orthogonally
diagonalizable).

Specific methods: Let A “ D ` L ` U (diagonal part of A, strictly lower triangular, strictly
upper triangular).

• Pick M “ D, N “ ´L ´ U . This yields the Jacobi iteration. Observe that here
xpkq “ D´1pp´L ´ Uqxpk´1q ` bq. This method is easy to parallelize.

• Pick M “ D ` L, N “ ´U . This yields the Gauss-Siedel method.

Theorem 10. If A is strictly diagonally dominant, then Jacobi iteration converges for all
xp0q.

A matrix A is strictly diagonally dominant if: |aii| ą
ř

j‰i |aij|.

Proof. First note that M´1N “ D´1p´L´Uq. So we can compute }G}8 “ maxj‰i

ˇ

ˇ

ˇ

aij
aii

ˇ

ˇ

ˇ
. By

strict diagonal dominance, this is strictly less than 1, so we converge.

Theorem 11. If A is spd, then Gauss-Siedel converges for all xp0q.

Proof. Proof omitted, in GVL. Similar structure to above.

From Gauss-Siedel, we can obtain a method of successive over-relaxation. TakeM “ 1
w
D`L,

N “
`

1
w

´ 1
˘

D ´ U . Then the key question is how to pick w to achieve small spectral
radius.

28

CS 5846

10 More Iterative Methods

Previously, we had to pick xp0q. Today, we explore cases where we can start xp0q “ 0.

Idea: Iterative refinement. Say we want to solve Ax “ b with xp0q ‰ 0 as initial guess.

1. Compute r “ b ´ Axp0q

2. Solve Ad “ r with dp0q “ 0 (if iterative method).

3. Set x̂ “ xp0q ` d as solution to original problem.

Observe that if we can solve for d exactly, x̂ solves the original problem. So our main concern
is trying to solve Ax “ b with initial guess xp0q “ 0, since the general problem reduces to
this case.

29

CS 5846

11 Krylov Methods

The next few lectures will focus on various applications of Krylov methods. For Ax “ b,
Krylov methods look for xpkq in a so-called Krylov subspace. More specifically, the kth Krylov
subspace.

Define for square A, KkpA, vq “ spantv,Av, . . . , Ak´1vu. In this case, we look for xpkq P

KkpA, bq.

Note that this is not necessarily the “best” subspace to look in – it would be easy to find
our solution in the space spanned by A´1b (but we don’t generally know how to find this).
Any y P KkpA, bq can be written as y “ Pk´1pAqb (polynomial in A).

Say we pick xpkq “ Pk´1pAqb and consider b ´ Apkq. Then we can write:

b ´ Axpkq
“ pI ´ APk´1pAqqb

This P̂k “ pI ´APk´1pAqq term corresponds to any degree-k polynomial with constant term
1. Now assume A is spd; we can write A “ V ΛV T . Then we can write r “ V P̂kpΛqV T b for
some P̂k degree k with P̂kp0q “ 1.

Note that V , V T are orthogonal so they do not affect the size of vector. So if there exists
some P̂ such that |P̂ pλiq| is small for all i “ 1, . . . , n, then there exists xpkq P KkpA, bq with
small residual.

Can reason about Krylov methods as a polynomial approximation problem – if we come
up with low-degree polynomial that has low value around k eigenvalues, then P̂ is small
around all of our eigenvalues. Turns out we can do this implicitly without even solving for
eigenvalues.

How to “work with” KkpA, bq in a nice way? To work with subspaces, we want a basis – in
some sense, the “best” basis is an orthonormal one. Could use:

¨

˝ b Ab . . . Ak´1b

˛

‚

or its QR decomposition. But this matrix is ill-conditioned: its columns converge to domi-
nant eigenvector. So instead, we aim to find an orthonormal basis for this matrix without
explicitly solving for Ak´1. We progressively compute an orthonormal basis (progressively
= at step k, we have a basis for KkpA, bq).

Arnoldi method for KkpA, bq:

Note that at each step, we apply A to a new vector orthogonal to all of our existing basis
vectors (qℓ), which helps avoid instability. Additionally, we only use Ay for vectors y – don’t
directly work with the matrix A (can treat as black box).

This procedure yields orthonormal basis q1, . . . , qk for KkpA, bq. Additionally, we have a
recurrence relation:

AQk “ Qk`1H̃k

30

CS 5846

Algorithm 7 Arnoldi Method

q1 Ð b{}b}2
for ℓ “ 1, . . . do

v Ð Aqℓ
for j “ 1, . . . , ℓ do Ź Similar to modified Gram-Schmidt

hjℓ Ð qTj v
v Ð v ´ hjℓqj

end for
hℓ`1,ℓ Ð }v}

qℓ`1 Ð v{hℓ`1,ℓ

end for

where:

Qk “

¨

˝ q1 . . . qk

˛

‚ H̃k “ A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

h11 hk1

h21
. . .

...

0
. . .

...
... 0

. . .
...

...
. . .

...
0 hk`1,k

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

H̃k is upper Hessenberg matrix – zero everywhere except upper triangle and one lower sub-
diagonal.

We can also write:

H̃k “

ˆ

Hk

hk`1,ke
T
k

˙

for Hk P Rkˆk.

Note that QT
kAQk “ Hk, the projection of A onto spantQku:

QT
k pQkHk ` hk`1,kqk`1e

T
k q “ Hk

This gives the result of applying A to Qkx (vector in span of Qk), written in terms of
components of Qk (via the orthogonal projection QT

k), i.e., H.

What if A is symmetric? Observe then that QT
kAQk is symmetric, so that Hk is as well.

But since H̃k is 0 below the first lower sub-diagonal, it must be tridiagonal; we call it Tk. In
particular, this means that we can avoid computing many entries of Tk, since the majority
will be 0. This gives rise to the so-called Lanczo’s method.

After this, Qk is still an orthonormal basis for KkpA, bq. Now we have AQk “ Qk`1T̃k

where:

31

CS 5846

Algorithm 8 Lanczo’s Method

β0 Ð 0, q0 Ð 0, q1 Ð b{}b}2
for ℓ “ 1, . . . do

v Ð Aqℓ
αℓ Ð qTℓ v
v Ð v ´ βℓ´1qℓ´1 ´ αℓqℓ Ź Three-term recurrence
βℓ Ð }v}2

qℓ`1 Ð v{βℓ

end for

T̃k “

ˆ

Tk

βke
T
k

˙

T̃k “ A “

¨

˚

˚

˚

˚

˚

˚

˝

α1 β1 0 . . . 0

β1 α2
. . .

...

0
.

...
. . . βk´1

0 βk´1 αk

˛

‹

‹

‹

‹

‹

‹

‚

In theory, this method is nice; but in practice, we lose orthogonality early on. Disastrous for
eigenvectors; mostly benign for solving linear systems

Next time: We solve Ax “ b via xp1q, . . . , xpkq, with xpkq Ñ x˚ “ A´1b. Pick xpkq to be the
“best” vector in KkpA, bq.

For today, we assume A symmetric and recall that Lanczo method yields:

AQk “ Qk`1T̃k

satisfying Qk is an orthonormal basis for KkpA, bq.

Krylov methods for Ax “ b are iterative methods with xpkq P KkpA, bq. Key ideas: (1) Which
xpkq is “best”? (2) Can it be found effeciently?

e.g we could pick xpkq “ argminxPKkpA,bq }A´1b ´ x}2 – this is the closest point in Krylov
subspace to the solution; however, not easily computable. Reasonable for (1), but not
(2).

However, we can use this idea with a different norm. Now assume that A is spd. If we denote
x˚ “ A´1b, it turns out we can solve:

xpkq
“ argmin

xPKkpA,bq

}x˚
´ x}A

Recall that }y}2B “ yTBy for spd B. This is the method of Conjugate Gradients.

32

CS 5846

How can we efficiently solve for x˚? Note that since we are working with norms, it’s equivalent
to minimize:

min
xPKkpA,bq

}x˚
´ x}

2
A

We use Lanczo’s method (implicitly) to help us. Anything in KkpA, bq can be written as Qky
for some k-dimensional y:

ypkq
“ min

yPRk
}x˚

´ Qky}
2
A

and taking xpkq “ Qky
pkq. Expanding out the } ¨ }A gives:

min
yPRk

pA´1b ´ Qkyq
TApA´1b ´ Qkyq ðñ min

y
yTQT

kAQky ´ 2yTQT
k b ` bTA´1b

This last term does not depend upon y, so we may discard it and avoid dealing with the
A´1:

ðñ min
y

yTTky ´ 2}b}yT e1

Where QT
kAQk`1 “ T̃k due to QT

kQk`1 “

¨

˚

˝ I
0
...
0

˛

‹

‚

so that QT
kQk`1T̃k “ Tk. and QT

k b satisfies:

first vector of Qk is normalized b and all others are orthogonal to it. This yields:

ðñ ypkq solves Tky
pkq

“ }b}e1

Algorithm 9 Conjugate Gradients

Given A, b, xp0q “ 0;
for k “ 1, 2, . . . do

One step of Lanczos to get Qk´1, Tk´1 Ñ Qk, Tk (also get qk`1, βkq

Solve Tky
pkq “ }b}2e1

Set xpkq “ Qky
pkq

Check convergence
end for

Cost per step:

• TmultpAq ` Opnq (i.e. how expensive it is to multiply by A, generally between n and
n2). Note that the 3-term recurrence in Lanczo’s means that there is no dependence
upon k.

• Opk3q as written, as we still need to solve Tky
pkq “ }b}2e1.

• Opnkq for finding xpkq “ Qky
pkq.

33

CS 5846

Lanczo’s is about the most efficient we can expect to get; however, it turns out that we can
remove the dependence upon k in the latter two items.

Note that for Tky
pkq “ }b}e1, the RHS doesn’t change between iterations. Additionally,

Tk`1 “

»

—

—

—

–

Tk
0
...
βk

0 . . . βk αk`1

fi

ffi

ffi

ffi

fl

and Tk is tridiagonal.

Our idea is to maintain a factorization of Tk, specifically an LDLT factorization; where L
is unit lower triangular and D is diagonal. Tk “ LkDkL

T
k allows us to go from Lk, Dk to

Lk`1, Dk`1 in Op1q work. This is because Tk is tridiagonal implies that Lk is bidiagonal.

Second key idea is that we don’t need to store Qk; only qk´1, qk, qk`1. This relies upon the
fact that we can rewrite xpkq “ Qky

pkq as: xpkq “ xpk´1q ` ξkω
pkq. Omit the details here;

high-level idea is that ωpkq is related to QkL
´1
k and can be computed in Opnq; ξk can be

computed in Op1q.

This gives a procedure where each step is overall independent of k and only uses Opnq total
storage.

All that remains is the check convergence. Most common way is to check }Axpkq´b}

}A}}xpkq}`}b}
ă

tol for some chosen tolerance. Costs of computing }b}, }xpkq} already baked in. However,
we still need norms. Expensive to compute }A}; but for now we assume we have a good
estimate.

We focus on how to compute }Axpkq ´ b}2. But it turns out that we have already done the
required work.

}Axpkq
´ b}2 “ }b ´ AQky

pkq
}2

“ }Qkp}b}e1q ´ Qk`1T̃ky
pkq

}2

“ }Qk}b}e1 ´ QkTky
pkq

´ qk`1βke
T
k y

pkq
}2

From step 2 above, the first 2 terms cancel out. Then:

“ }qk`1βke
T
k y

pkq
}2 (Note that this residual is orthogonal to Qk)

But qk`1 is orthonormal so we have:

“ }βke
T
k y

pkq
}2

Now take A to be symmetric, non-singular. We redefine the “best” vector in Krylov space
as the one minimizing residual error:

min
xPKkpA,bq

}b ´ Ax}2

This gives method known as MINRES. Why do we expect to be able to solve this effi-
ciently?

min
xPKkpA,bq

}b ´ Ax}2 ðñ min
y

}b ´ AQky}2

34

CS 5846

As written, this is a big least squares problem. We can make the following substitutions:

ðñ min
y

›

›

›
Qk`1}b}e1 ´ Qk`1T̃ky

›

›

›

2

ðñ min
y

›

›

›
}b}e1 ´ T̃ky

›

›

›

2
(now solving k ` 1 ˆ k LS problem)

This yields an algorithm quite similar to CG; just with the optimization step replaced by this
new minimization. Here we instead store a QR factorization of T̃k and set of auxiliary vectors

Algorithm 10 MINRES

Given A, b, xp0q “ 0;
for k “ 1, 2, . . . do

One step of Lanczos to get Qk´1, Tk´1 Ñ Qk, Tk (also get qk`1, βkq

Solve miny

›

›

›
}b}e1 ´ T̃ky

›

›

›

2
for ypkq

Set xpkq “ Qky
pkq

Check convergence
end for

representing “QkR
´1
k ” to reduce work in each step. Also note that this method guarantees

that the residual is nonincreasing (not true for CG as we optimize for }A} there).

Summary of Krylov methods covered so far: (for Ax “ b).

CG: xpkq “ argminxPKkpA,bq }x ´ x˚}A for spd A, where x˚ “ A´1b.

MINRES: xpkq “ argminxPKkpA,bq }b ´ Ax}2 for symmetric A.

Note the similarities in the structures of these algorithms:

• Run one step of Lanczos pTmultpAq ` Opnqq

• xpk´1q Ñ xpkq carefully pOpnqq (maintain factorizations to make this cheap)

• Check convergence pOp1qq

Last key point is that storage required is Opnq – no dependence on k. Every iteration costs
the same. One small complication – qk lose orthogonality due to the 3-term recurrence; this
is mostly okay for Ax “ b.

How long do these algorithms take to converge? We examine both of these algorithms for
spd matrices (required for CG, makes analysis simpler for MINRES).

11.1 Convergence Analysis for Krylov Methods

Take Pk to be the polynomials of degree at most k and P̂k to be the polynomials of degree
at most k with pp0q “ 1.

35

CS 5846

Note that xpkq P KkpA, bq ðñ xpkq “ ppAqb for some p P Pk´1. Let e
pkq “ xpkq ´ x˚ denote

the error vector and consider }epkq}A.

}epkq
}A “ min

pPPk´1

}ppAqb ´ A´1b}A

“ min
pPPk´1

}pppAqA ´ IqA´1b}A

Note that if xp0q “ 0, ep0q “ ´A´1b. Additionally, if p P Pk´1, ´ppAqA ` I P P̂k (the minus
sign is okay because we’re working with the norm).

“ min
qPP̂k

}qpAqep0q
}A

Because A is spd, we have a well-defined A1{2 “ V Λ1{2V T . This allows us to rewrite the
A-norm as:

“ min
qPP̂k

}A1{2qpAqep0q
}2

Polynomials of A commute with powers of A so we have:

“ min
qPP̂k

}qpAqA1{2ep0q
}2

}epkq
}A ď min

qPP̂k

}qpAq}2}A
1{2ep0q

}2 (n.b. this bound is sharp)

“ }ep0q
}A min

qPP̂k

}qpAq}2

We can use the eigendecomposition of A to help simplify:

}epkq}A

}ep0q}A
ď min

qPP̂k

}V qpΛqV T
}2

ď min
qPP̂k

}qpΛq}2

ď min
qPP̂k

max
i“1,...,n

|qpλiq|

It’s easier to minimize this quantity when A’s eigenvalues are clumped together – intuitively,
we can take care of several eigenvalues at once with a single root of polynomial. If A has
ℓ distinct eigenvalues, then CG can converge “exactly” in ℓ steps – we can pick a degree ℓ
polynomial to annihilate every eigenvalue. In practice, this isn’t quite the case as we don’t
have exact arithmetic (but pretty close for small ℓ). As a slightly more relaxed version, if A
has ℓ small clusters of eigenvalues, you get close in ℓ steps (goodness depends upon tightness
of clusters).

General result: Assume that the eigenvalues of A lie in interval rλmin, λmaxs. We derive a
bound on the error epkq in terms of the condition number of A. Note that because A is spd,
κpAq “ λmax

λmin
.

36

CS 5846

Theorem 12.
}epkq}A

}ep0q}A
ď 2

ˆ?
κ ´ 1

?
κ ` 1

˙k

In other words, to get ε accuracy requires «
?
κ log 1

ε
steps. This upper bound is nice,

but the real power of the method is through (implicitly) solving the optimization problem
highlighted above.

Proof sketch: Note that the above work shows that, for any q P P̂k:

}epkq}A

}ep0q}A
ď max

i“1,...,n
|qpλiq|

Under the eigenvalue bounds assumption, pick a specific q to be uniformly small over this
interval. We pick q such that qp0q “ 1 and q is as small as possible on rλmin, λmaxs – smallest
uniform upper/lower bounds on rλmin, λmaxs. This turns out to be a scaled and shifted
Chebyshev polynomial.

qpzq “ Tk

ˆ

2z ´ λmax ´ λmin

λmax ´ λmin

˙N

Tk

ˆ

´λmax ´ λmin

λmax ´ λmin

˙

where Tk is the kth Chebyshev polynomial of the first kind.

Tkpzq “ cospk arccospzqq on r´1, 1s

or alternatively, T0 “ 1, T1 “ z, and Tj`1pzq “ 2zTjpzq ´ Tj´1pzq

The key point here is that |Tkpzq| ď 1 on r´1, 1s (grow quickly outside). This means
that:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

Tk

˜

´ λmax ´ λmin

λmax ´ λmin

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

is our upper bound.

MINRES:

If xp0q “ 0, then rp0q “ b. Similar procedure to before, but this time we only need to factor
out b:

}rpkq
}2 “ min

pPPk´1

}b ´ AppAqb}2

“ min
pPPk´1

}pI ´ AppAqqb}2

ď }rp0q
}2min

qPP̂k

}qpAq}2

}rpkq}2

}rp0q}2
ď min

qPP̂k

max
i“1,...,n

|qpλiq|

37

CS 5846

This bound is likewise sharp (there exist an A, b where it holds with equality) but generally
stronger.

Why is MINRES analysis hard? If A is indefinite, we need our polynomial to be 1 at 0, but
small on two intervals on either side. For more discussion on this, see Greenbaum 3.1.

Now suppose that A is no longer symmetric – A P Rnˆn nonsingular. Since there’s no A-
norm, we can’t really work with a variant of CG. Instead, we directly try to minimize the
residual.

xpkq
“ argmin

xPKkpA,bq

}b ´ Ax}2

GMRES – generalized minimum residuals. Historical fact: MINRES showed up in 1974-
1976; GMRES not until 1986 (delay due to “not wanting to store so many Krylov vectors”).
This procedure essentially mirrors MINRES, except we can’t use Lanczos method. Instead,
we replace it with Arnoldi method – instead of getting out a tridiagonal factorization, we
maintain an upper Hessenberg matrix.

xpkq
“ Qky

pkq, ypkq
“ argmin

y
}b ´ AQky}2

Arnoldi: AQk “ Qk`1H̃k and b “ }b}Qk`1e1. So ypkq “ argminy }}b}e1 ´ H̃ky}2, a pk ` 1q ˆ k
LS problem. But since this is dense, the cost per iteration depends on k – grows as we
compute more steps.

38

CS 5846

11.2 GMRES

Given A P Rnˆn nonsingular and b P Rn. Our chosen method is to essentially generalize
MINRES to non-symmetric matrices. To a first-order approximation, this replaces Lanczos
with Arnoldi as a subroutine.

Algorithm 11 GMRES (Conceptually)

Given A, b;
for k “ 1, 2, . . . do

One step of Arnoldi to get Qk´1, H̃k´1 Ñ Qk, H̃k (also get qk`1 implicitly)

Solve miny

›

›

›
}b}e1 ´ H̃ky

›

›

›

2
for ypkq

Set xpkq “ Qky
pkq

Check convergence
end for

key relation for Arnoldi: AQk “ Qk`1H̃k. Also note that }rpkq}2 “

›

›

›
}b}e1 ´ H̃ky

›

›

›

2
because

Qk is orthogonal – residual is preserved.

Comparison with MINRES in time per iteration:

Step # MINRES GMRES
Lanczos/Arnoldi TmultpAq ` Opnq TmultpAq ` Opknq

Finding ypkq Op1q Opkq

Finding xpkq Opnq Opknq

Total Storage 3 vectors k vectors

Note that GMRES has this dependence upon k – later steps are more expensive. To get the
complexity for ypkq, need to store and update a QR factorization of H̃k.

Key idea now is to limit the impact of k. In practice, we use restarting. Fundamental idea:
cap the number of iterations (i.e. length of for loop) to m; if we haven’t reached convergence
yet, restart with new b.

Algorithm 12 Restarted GMRES

Given A, b, xp0q,m;
(1) Compute r “ b ´ Axp0q

(2) Compute d “ GMRESpA, r,mq Ź “Solve Ad “ r” in m iterations
(3) x̂ Ð xp0q ` d
if x̂ is good enough then

return x̂
else

xp0q Ð x̂ and goto (1)
end if

39

CS 5846

Note that for this algorithm, convergence can stagnate (intuitively, don’t run enough steps
of GMRES to get it to converge).

Error analysis of GMRES:

We start with minxPKkpA,bq }b´Ax}2. Recall that this is equivalent to finding minpPp̂k }ppAqb}2
(same analysis as in MINRES). This implies:

}rpkq}2

}b}2
ď min

pPp̂k
}ppAq}2

The latter depends upon the eigenvalues of A, but we pay additional cost for GMRES. We
assume that A “ XΛX´1 is diagonalizable.

}rpkq}2

}b}2
ď κpXqmin

pPp̂k
max

i“1,...,n
|ppλiq|

Using the observation that κpXq “ }X}}X´1}. Hence, the convergence of GMRES improves
when X, i.e. eigenvectors of A, is well-conditioned. Moreover, when A is not symmetric, λi

may not be real. It is difficult to pick p̂k to be small on all such eigenvalues when they exist
on the complex plane.

Key observation: Convergence depends upon spectrum of A. Generally, a few small clusters
of eigenvalues is good – relatively low-degree polynomials with zeroes in those clusters. This
works even when conditioning is bad: single rogue eigenvalue is bad for conditioning but
only takes one more zero to cancel. Conversely, evenly spaced eigenvalues is bad.

Krylov methods are widely used because of Preconditioners. Goal is to get good solutions
in a few iterations. Instead of solving Ax “ b, solve M´1Ax “ M´1b for some nonsingular
M . For direct methods, multiplying by M´1 doesn’t buy us much – still end up with an
n ˆ n matrix. But for Krylov methods, we can pick M in ways that improve the spectrum
of A.

Left preconditioning (there is also right preconditioning with AM´1y “ b, so x “ M´1y;
and M´1

1 AM´1
2 y “ b two-sided conditioning).

Key consideration: We need to pick M such that M´1A is “nice” in spectrum and M´1 is
easy to apply.

Two extreme points: M “ A gives nicest spectrum, M “ I easiest to apply. Hope is that
something in between gives us something useful.

Aside: If A is spd, we want M to be spd as well (so that we can run something
like CG instead of GMRES):

M “ LLT
ùñ M´1A „ L´1AL´T

More generally, L´1AL´T pLTxq “ L´1b. We can rewrite this in such a way that
we can execute CG with A,M´1. Similarly, if A is symmetric, we want to pick a
symmetric preconditioner.

40

CS 5846

As a general rule, no good “all-purpose” way to pick preconditioner. Often use information
from the problem which A describes to help inform the choice.

• One generic option: Jacobi preconditioning

M “

¨

˚

˝

a11 0
. . .

0 ann

˛

‹

‚

Take diagonal of A. If A is strictly diagonally dominant, might tell you info about the
eigenvalues.

• Block Jacobi:

M “

¨

˚

˚

˚

˚

˚

˝

a11 a12 0
a21 a22

. . .

0 ann

˛

‹

‹

‹

‹

‹

‚

Blocks of diagonal, tridiagonal, etc. Performance depends upon the permutation of A.

• If A is sparse: so-called “incomplete factorizations.”

A « LU

and take LU “ M .

• Coarse versions of the problem (e.g. motivation in solving PDEs, making fine grid
coarser). Solve problem at coarse resolution and interpolate to finer.

11.3 Krylov Methods Demo

Recap: We have Ax “ b for nonsingular A. Several approaches to choose from:

• CG (A spd)

• MINRES (A “ AT)

• GMRES (any A)

For symmetric A, we can use Lanczos – otherwise, we need Arnoldi. Convergence depends
upon spectrum of A. We can get upper bounds on convergence time/error depending upon
eigenvalues but often loose.

We can precondition to accelerate convergence. Preconditioning consists of picking nonsin-
gular M and solving M´1Ax “ M´1b instead. Recall that we want M to satisfy:

1. It is easy to solve linear systems with M .

2. Spectrum of M´1A is nice.

41

CS 5846

Because of this second condition, the best preconditioners are problem-dependent. But
even for known problems, it is difficult to show that preconditioners are good in this regard
systematically; mainly measured heuristically.

Many more Krylov methods exist.

For Ax “ b:

• So-called biCG and biCGSTAB. bi-conjugate gradient methods (latter is stable). In-
stead of recurrence on A, recurrence on something loosely related to AT .

• CGN – CG on normal equations, solving ATAx “ AT b.

• QMR – quasi-minimum residual methods. Instead of solving for min residual, loosely
solve for something close to min.

For minx }b ´ Ax} with A P Rmˆn,m ě n.

• CGN – form ATAx “ AT b and run CG.

• LSQR – least squares QR. Mathematically equivalent to CGN; but it never has to
actually form the normal equations, better-behaved numerically.

• LSMR – mathematically equivalent to MINRES applied to ATAx “ AT b. Same caveats
as above – don’t need to form normal equations.

We will see Krylov methods again for eigenvalue/eigenvector problems.

Aside: Say we want to solve minx }b ´ Ax}2 ` λ}x}2 for m ě n. Recall from hw2 that this
can be seen as solving a larger least squares problem:

min
x

›

›

›

›

ˆ

b
0

˙

´

ˆ

A
?
λI

˙

x

›

›

›

›

2

ðñ pATA ` λIqx “ AT b

Krylov subspaces are “shift invariant” – KkpATA, bq “ KkpATA` λI, bq. So even if we want
to solve for different λ, only need to run Lanczos once to get correct space. Each value of λ
only requires solving a k ˆ k linear system.

42

	Matrix Factorizations
	Floating point
	Idealized floating point:
	Arithmetic with floating point numbers:
	Conditioning
	Accuracy and Stability

	Algorithms
	Error bounding
	Triangular factorizations with specific structure
	Orthogonal Matrices
	Computing QR factorizations
	Conditioning of LS
	Iterative methods
	More Iterative Methods
	Krylov Methods
	Convergence Analysis for Krylov Methods
	GMRES
	Krylov Methods Demo

