
ORIE 6330 Notes

Shawn Ong

September 2020

1 Lecture 1 (9/2/20)

What;s nice about network flows? Rich set of applications, beautiful algorithms, nice anal-
yses, practical implementation

Max s− t flows:

• Input directed graph G = (V,A), capacities u(i, j)∀(i, j) ∈ A, source s ∈ V , sink t ∈ V

• Goal: find flow f maximizing net flow out of source s

Definition 1. A s− t flow f is f : A→ R≥0 s.t.:

(i) 0 ≤ f(i, j) ≤ u(i, j) (capacity constraint)

(ii)
∑

k:(k,i)∈A f(k, i) =
∑

k:(i,k)∈A f(i, k)

(iii) if (i, j) ∈ A, then (j, i) ∈ A and f(j, i) = −f(i, j). (skew symmetry)

To make the last point work, we set u(j, i) = 0. Adding skew symmetry allows us to rewrite
first condition as f(i, j) ≤ u(i, j).

value of a flow is |f |, amt of flow out of s.

Definition 2. An s− t flow is f : A→ R such that:

(i) f(i, j) ≤ u(i, j) (capacity constraint)

(ii)
∑

k:(i,k)∈A f(i, k) = 0 (flow conservation)

(iii) f(i, j) = −f(j, i) (skew symmetry)

The value of a flow is |f | ≡
∑

k:(s,k)f(s, k).

Def: An s− t cut is S ⊆ V, s ∈ S, t /∈ S.

Take δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S}, δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S.

Definition 3. The capacity of cut S is u(δ+(S)) =
∑

(i,j)∈δ+(S) u(i, j)

1

ORIE 6330

Lemma 4. For any s− t flow f , s− t cut S, |f | ≤ u(δ+(S)).

Proof.

|f | =
∑

k:(s,k)∈A

f(s, k) + 0 =
∑

k:(s,k)∈A

f(s, k) +
∑

i∈S−{s}

∑
j:(i,j)∈A

f(i, j)

=
∑
i∈S

 ∑
j∈S:(i,j)∈A

f(i, j) +
∑

j /∈S:(i,j)∈A

f(i, j)


=

∑
i∈S,j /∈S:(i,j)∈A

f(i, j)

(first term vanishes because f(i, j) = −f(j, i).

Corollary 5. If we have s− t flow f , s− t cut S such t hat f(i, j) = u(i, j)∀(i, j) ∈ δ+(S),
then |f | = u(δ+(S)).

Definition 6. If f(i, j) = u(i, j), then (i, j) is saturated.

Definition 7. The minimum s− t cut S is S∗ that minimizes u(δ+(S)) over all s− t cuts.

Reminiscent of a weak duality statement.

Theorem 8. (Ford,Fulkerson 1955): the value of a maximum flow is equal to the capacity
of a minimum s− t cut.

Definition 9. Given a flow f , the residual graph Gf = (V,A) has residual capacities
uf (i, j) = u(i, j)− f(i, j).

NOTE: This definition includes the induced edges from skew-symmetry. Residual capacities
indicate how much additional flow can be added to/removed from an edge.

Definition 10. An s − t path in Gf in which all arcs have positive residual capacity is an
augmenting path.

Given flow f , graph Gf , augmenting path P , δ = min(i,j)∈P uf (i, j) > 0. Then take:

f ′(i, j) =


f(i, j) + δ ∀(i, j) ∈ P
f(i, j)− δ ∀(j, i) ∈ P
f(i, j) otherwise

Call this pushing δ flow along P . We first check whether this is still a flow:

• Skew-symmetry: f ′(i, j) = f(i, j) + δ = −f(j, i) + δ = −(f(j, i)− δ) = −f ′(j, i); other
cases easy.

• Capacity constraint: f ′(i, j) = f(i, j) + δ ≤ f(i, j) + uf (i, j) = u(i, j)

• Flow conservation: total flow in/out remains unchanged b/c of paired edges.

2

ORIE 6330

After pushing δ, we have |f ′| = |f |+ δ.

Theorem 11. TFAE:

1. f is a maximum flow.

2. There is no augmenting path P in Gf .

3. There is an s− t cut S s.t. |f | = u(δ+(S)).

Proof. (1) =⇒ (2): Just showed contrapositive (if augmenting path exists, can push more
flow).

(2) =⇒ (3): Take S to be the vertices reachable from s via positive residual capacities.
Note that t /∈ S because no augmenting paths exist. Then for (i, j) ∈ A, i ∈ S, j /∈ S, we
have f(i, j) = u(i, j). Follows from corollary.

(3) =⇒ (1): Since |f | ≤ u(δ+(S)) for any s − t cut S, equality implies max flow and min
cut.

2 Lecture 2 (9/7/20)

Algorithm 1 Ford-Fulkerson algorithm

f ← 0
while ∃ augmenting path in Gf do

Push flow along P
Update f

end while
Return f

Integrality property: If all capacities u(i, j) are integer, then there is a max flow f such that
all f(i, j) are integers. Moreover, this flow can be found via our algorithm (invariant is
maintained by alg).

How efficient is the algorithm? Take U = max(i,j)∈A u(i, j),m = |E|, n = |V |. Easy upper
bound on flow value mU . Since flow value increases by at least 1 each time, this corresponds
to an upper bound on the number of iterations of the algorithm.

If runtime of finding augmenting path/updating is O(m), then overall runtime would be
O(m2U).

Definition 12. An algorithm runs in pseudopolynomial time if the number of steps can be
bounded by a polynomial when input is encoded in unary.

Definition 13. An algorithm runs in strongly polynomial time if the runtime can be bounded
by a polynomial in the number of input data items, e.g. poly(n,m).

3

ORIE 6330

So O(m2U) is not poly-time, but it is pseudopolynomial. Example of something “normal”
poly-time is O(mn logU).

Now consider the densest subgraph problem.

• Input G = (V,E) (undirected).

• Let E(S) = set of edges with both endpoints in S.

• Let δ(S) = set of edges with exactly one endpoint in S.

• Let di denote the degree of i.

Note:
∑

i∈S di = 2E(S) + δ(S). We wish to find S ⊆ V maximizing |E(S)|
|S| ; let D∗ denote the

maximum density and S∗ be a set of density D∗.

Lemma 14. Max flow value of graph described below is mn iff γ ≥ D∗.

Proof. Suppose γ ≥ D∗. We already know that mn is an upper bound on the size of flow.

Computation of capacity of |S| shows that any other cut has capacitymn+2|S|
(
γ − |E(S)|

|S|

)
≥

mn. Hence max flow is exactly mn.

Suppose γ < D∗. Then s − t cut {s} ∪ S∗ has capacity mn + 2|S|
(
γ − |E(S∗)|

|S∗|

)
. But then

γ − |E(S∗)|
|S∗| < 0, so this cut has strictly lower capacity and max flow is strictly less than

mn.

Theorem 15. (Goldberg 1984) Densest subgraph can be found in O(log(n)) max flow com-
putations.

Proof. Idea: Try to guess density of densest subgraph, γ. Run max flow to determine if γ
too high or too low. Then use binary search to find actual D∗.

Make graph by adding s, t. Add edges s → v for all v ∈ V with capacity m, bidirectional
edges with capacity 1 between i and j whenever {i, j} ∈ E, and edges v → t with capacities
m+ 2γ − dk.

Easy upper bound on value of this flow is nm. Note that {s} is an s− t cut of capacity mn;
capacity of the s− t cut {s} ∪ S is:

m|V − S|+ |δ(S)|+
∑
i∈S

(m+ 2γ − di) = m(n− |S|) + |δ(S)|+m|S|+ 2γ|S| −
∑
i∈S

di

= mn+ |δ(S)|+ 2γ|S| − (2|E(S)|+ |δ(S)|)

= mn+ 2|S|
(
γ − |E(S)|

|S|

)
Rest of proof follows from lemma + binary search.

Corollary 16. Let D′ < D∗ be the second largest density, so that for all S ⊆ V either

4

ORIE 6330

|E(S)|
|S| ≤ D′ or |E(S)|

|S| = D∗. Then if D′ ≤ γ < D∗, and {s} ∪X is a min s− t cut, then X is
a maximum densest subgraph.

Proof. For any optimal S∗, capacity of s − t cut {s} ∪ S∗ < mn. For any set S of density
|E(S)|
|S| ≤ D′ ≤ γ, capacity of cut {s} ∪ S is ≥ mn. So we will find a min cut.

But how can we figure out when we have D′ ≤ γ < D∗? Denote the set of possible densities
Z = m′

n′
: 0 ≤ m′ ≤ m, 1 ≤ n′ ≤ n}. Let ∆ be the smallest possible positive difference

between two elements of Z.

∆ =
m1

n1

− m2

n2

=
m1n2 −m2n1

n1n2

≥ 1

n2

So if we can identify an interval of size at most 1
n2 , we can use the above result to produce

our algorithm.

5

ORIE 6330

Algorithm 2 Densest subgraph

1: procedure Euclid(a, b) . The g.c.d. of a and b
2: `← 0, u← m,X ← ∅
3: while u− ` ≥ 1

n2 do . We have the answer if r is 0
4: Compute max flow f
5: Find min s− t cut {s} ∪ S with guess γ = 1

2
(u+ `)

6: if |f | = mn then
7: u = 1

2
(u+ `)

8: else
9: `← 1

2
(u+ `)

10: X ← S
11: end if
12: end while
13: return X . X has maximum density
14: end procedure

How many calls to max flow? O
(

lg m
1/n2

)
= O(logmn2) = O(log n).

3 Lecture 3 (9/9/20)

How do we make the algorithm (originally O(mU) iterations) more efficient? Idea: choose
the most improving alternating path, i.e. augmenting path P that maximizes amount of
flow we can push (min residual capacity). Want to maximize: min(i,j)∈P uf (i, j) = u(i, j)−
f(i, j).

Idea: We can modify Dijkstra’s alg for shortest paths to find this in O(m+ n log n).

Idea: Sort edges in descending order of residual capacity. Add edges in until s ; t is
connected.

Flow decomposition: Write f = f ′ + f ′′ (or f = f ′ − f ′′) if f(i, j) = f ′(i, j) + f ′′(i, j) for
all edges (or taking differences). Note that if both f ′, f ′′ obey flow conservation and skew
symmetry, then f does too; |f | = |f ′|+ |f ′′|.

Lemma 17. Flow decomposition: For s− t flow f , ∃s− t flows f1, . . . , fp with p ≤ m such
that f =

∑p
i=1 fi and each fi has positive flow only on an s− t path or a cycle.

Proof. (Sketch): Suppose ∃(i, j) with f(i, j) > 0. Then if j 6= t, ∃k such that f(j, k) > 0 (flow
conservation); likewise for i 6= s,∃h s.t. f(h, i) > 0. Repeated extending gives either a cycle
C or s− t path P of positive flow. Suppose the latter; then take δ = min(i,j) inP f(i, j) > 0.
We have:

fP (i, j) =


δ (i, j) ∈ P
−δ (j, i) ∈ P
0 otherwise

6

ORIE 6330

Claim: f − fP is a flow; not very difficult. Also note that one fewer edge has positive flow.
Remainder follows by induction.

Lemma 18. Let f be an s− t flow in G, and f ∗ a maximum flow in G. Then the max flow
in Gf has value |f ∗| − |f .

Proof. Claim that f ′ = f ∗ − f is a feasible flow in Gf . Already know that f ′ obeys flow
conservation, skew-symmetry since f ∗ and f do as well. So only remains to show that
capacity constraints satisfied:

f ′(i, j) = f ∗(i, j)− f(i, j) ≤ u(i, j)− f(i, j) = uf (i, j)

Now consider min s − t cut S in G. So |f ∗| = u(δ+(S)), so that f ∗(i, j) = u(i, j) for all
(i, j) ∈ δ+(S). Then S is also a min s−t cut in Gf , since f ′(i, j) = f ∗(i, j)−f(i, j) = uf (i, j)
for all (i, j) ∈ δ+(S).

So f ′ is a max flow in Gf , S is min s− t cut, and f ∗ = f ′ + f .

Lemma 19. Residual capacity of most improving augmenting path is at least 1
m

(|f ∗| − |f |).

Proof. Value of max flow in Gf is |f ∗| − |f |. Can decompose max flow in Gf into at most
m flows fi. Largest augmenting path must then have value at least 1

m
(|f ∗| − |f |).

Theorem 20. If capacities are integers, then the most improving path alg takes O(m ln(mU))
iterations. In particular, this gives a poly-time algorithm.

Proof. We had |f ∗| ≤ mU as an upper bound. Let f (k) indicate the flow f after k iterations.
Note that |f (1)| ≥ |f |+ 1

m
(|f ∗| − |f |). Rearranging this gives:

|f ∗| − |f (1)| ≤ (1− 1

m
)(|f ∗| − |f |)

< e−1/m(|f ∗| − |f |)

Repeating this gives in general:

|f ∗| − |f (k)| < e−k/m(|f ∗| − |f |)

So it suffices to choose k = m ln(mU) to get:

|f ∗| − |f (k)| < 1

mU
(|f ∗| − |f |) ≤ 1

mU
(mU − 0) ≤ 1

By integrality (all of our augmenting paths have integer values), this suffices to show that
f (k) is a max flow.

7

ORIE 6330

Instead of looking for the best augmenting path, does it suffice to find one that is “good
enough”?

Idea: ∆-scaling parameter. Consider Gf (∆) = graph of all arcs with residual capacity ≥ ∆.
Any s− t path in this graph allows us to push flow at least ∆; if no such path exists, then
we must be close to max flow.

Algorithm 3 ∆-scaling

1: procedure Euclid(a, b)
2: f ← 0; ∆← 2blgUc

3: while ∆ ≥ 1 do
4: while ∃s− t path P in Gf (∆) do
5: Push flow on P
6: Update f
7: end while
8: ∆← ∆/2
9: end while
10: Return f
11: end procedure

Call a ∆-scaling phase one iteration of outer loop for fixed value of ∆.

Lemma 21. At the start of ∆-scaling phase, value of flow in Gf ≤ 2m∆.

Proof. At start, f = 0,∆ ≥ U/2, with max flow value ≤ mU .

At the end of a ∆-scaling phase, no s− t path exists in Gf (∆), i.e. ∃s− t cut S s.t. for all
(i, j) ∈ S, uf (i, j) < ∆. This implies uf (δ

+(S)) < m∆.

So at the start of next ∆-scaling phase, uf (δ
+(S)) < 2m∆.

Lemma 22. Each ∆-scaling phase only has at most 2m iterations.

Proof. Each iteration of ∆-scaling phase increases flow value by at least ∆. Max flow in
Gf = |f ∗| − |f | ≤ 2m∆. If the phase is not over after 2m iterations, we have |f (2m+1)| ≥
|f |+ (2m+ 1)∆ ≥ |f ∗|

Theorem 23. If capacities are all integers, then alg takes at most O(m lnU) iterations.

Proof. Each inner loop is at most 2m iterations; the outer loop has at most O(lgU) iterations.
Again, stop when ∆ < 1 by integrality.

8

ORIE 6330

4 Lecture 4 (9/14)

Augmenting path algorithms: Maintain a feasible flow; eventually get s− t cut. Today, look
at different type of alg: Infeasible flow at every step, maintaining s− t cut throughout; end
up with feasible flow.

Push/relabel alg: Maintain an s− t preflow:

• f(i, j) ≤ u(i, j) for all (i, j) ∈ A

• f(i, j) = −f(j, i) for all (i, j) ∈ A

•
∑

k:(k,i)∈A f(k, i) ≥ 0 for all i 6= s.

Last condition: can’t have more flow coming in than going out. Keep track of excess of
preflow f at i:

ef (i) =
∑

k:(k,i)∈A

f(k, i)

If ef (i) = 0∀i 6= s, t, then f is actually a flow.

Idea: Push any positive excess to sink on shortest paths to t. Maintain a valid distance
labeling d : V → Z such that:

• d(s) = n

• d(t) = 0

• d(i) ≤ d(j) + 1 for all (i, j) with uf (i, j) > 0.

Idea: If there is a path P in residual graph from i to t, then d(i) ≤ |P | (follows basically
from applying third condition to all vertices in path).

Lemma 24. There are no augmenting paths in Gf .

Proof. Suppose s − t path P exists. Then d(s) ≤ d(t) + P ≤ 0 + (n − 1) = n − 1. But
d(s) = n.

We push excess to nodes that we know are close to sink. So push excess from i to j only if
d(i) = d(j) + 1. What happens if d(i) ≤ d(j)∀(i, j) : uf (i, j) > 0? Infer that the distance
d(i) is too small, and relabel i.

Push(i,j):

δ ← min(uf (i, j), ef (i))

f(i, j)← f(i, j) + δ, f(j, i) = f(j, i)− δ

Relabel(i):

d(i)← min{d(j) + 1 : uf (i, j) > 0}

9

ORIE 6330

Algorithm 4 Push-relabel (Goldberg, Tarjan 1988)

1: procedure PushRelabel(G)
2: f ← 0
3: f(s, j)← u(s, j), f(j, s)← −u(s, j),∀(s, j) ∈ A
4: d(s)← n, d(i)← 0,∀i 6= s
5: while ∃ active i (i.e. ef (i) > 0, i 6= s, t do
6: if ∃j : uf (i, j) > 0 and d(i) = d(j) + 1 then Push(i,j)

7: else Relabel(i)

8: end if
9: end while
10: Return f
11: end procedure

Lemma 25. The algorithm maintains a preflow.

Proof. (Sketch): Initially, if (s, j) ∈ A, then ef (j) = u(s, j) ≥ 0, ef (j) = 0 for all other j.

If we push δ on (i, j), then:

ef ′(i) = ef (i)− δ ≥ 0, ef ′(j) = ef (j) + δ ≥ 0

Lemma 26. The algorithm maintains a valid distance labelling.

Proof. Initially, this is trivial for all (i, j) except for (s, j) since d(s) = n, d(j) = 0. No issue
because no positive residual capacity on the arcs out of s.

After relabel: Maintains labelling by construction.

After push: possible to have uf (j, i) = 0 before pushing on (i, j), but uf (j, i) > 0 afterwards.
But by virtue of choosing this arc, we needed d(i) = d(j) + 1 =⇒ d(j) = d(i) − 1 ≤
d(i) + 1.

Theorem 27. If the algorithm terminates, then f is a max flow.

Proof. If it terminates, f is a flow. But since no augmenting path exists, this must be a max
flow.

It remains to show that (1) this algorithm does terminate, and (2) it does so in poly-
time.

Lemma 28. If ef (i) > 0 for i 6= t, then ∃ a path i ; s on arcs of positive residual capacity.

10

ORIE 6330

Proof. Let S be the nodes reachable from i via arcs of positive residual capacity. Assume
s /∈ S. Then for any (j, k) ∈ δ+(S), must have f(j, k) = u(j, k). Now we have f(k, j) =
−f(j, k) = −u(j, k) ≤ 0. Consider:

∑
j∈S

ef (j) =
∑
j∈S

∑
k:(k,j)∈A

f(k, j) =
∑
j∈S

 ∑
k∈S:(j,k)∈A

f(k, j) +
∑

k/∈S:(j,k)∈A

f(k, j)


But the first term cancels by skew-symmetry, and we have:∑

j∈S,k/∈S:(k,j)∈A

f(k, j) ≤ 0

But f is a preflow, so ef (j) ≥ 0 for all j 6= s. In particular, if s /∈ S, we have ef (j) = 0 for
all j ∈ S; but i ∈ S, violating our initial assumption that ef (i) > 0.

Lemma 29. For all i ∈ V , d(i) ≤ 2n− 1, i.e. the distance labels never get “too big.”

Proof. We only relabel i if ef (i) > 0, i.e. ∃ path P of arcs of positive residual capacity. Then
:

d(i) ≤ d(s) + |P | ≤ n+ (n− 1) = 2n− 1

Lemma 30. The push-relabel algorithm runs at most 2n2 executions of relabel.

Proof. For i 6= s, we always have d(i) ≤ 2n − 1, and distance labels never decrease. Each
relabel increases d(i) by at least 1, so at most 2n2 relabels.

For pushes, we consider whether the push is saturating.

A Push operation is saturating with δ = uf (i, j) if after push(i,j), f(i, j) = u(i, j);
nonsaturating otherwise (then δ = ef (i)).

We claim that there are at most mn saturating pushes. To see this, pick (i, j) ∈ A. To push
from i to j, need d(i) = d(j) + 1. Then to do another saturating push on (i, j), we need to
have pushed from j to i. this requires:

d′(j) = d′(i) + 1 ≥ d(i) + 1 = (d(j) + 1) + 1 = d(j) + 2

Hence there are at most n saturating pushes from i to j.

Consider now the number of nonsaturating pushes. We claim that there are at most 4n2m
nonsaturating pushes. We use a potential function + amortized analysis to measure this.

Φ =
∑

active i

d(i)

11

ORIE 6330

Initially, Φ = 0. Claim: Nonsaturating push on (i, j) makes Φ go down by at least 1. Such
a push makes i inactive; it may make j active, but d(i) = d(j) + 1 in this case. So such a
push always decreases Φ.

When can Φ increase?

• Saturating push on (i, j) can add d(j) ≤ 2n− 1 for each saturating push.

• Relabel increase by 1

Total increase in Φ is bounded by:

Φ ≤ nm(2n− 1) + 2n2 ≤ 4n2m if m ≥ n

The second term corresponds to an upper bound on the sum of distance labels.

5 Lecture 5 (9/16)

Theorem 31. Push/relabel takes O(n2m) push/relabel operations and O(n2m) time.

Proof. Sketch: Each operation takes average constant time. Time taken per relabel on i is
just outdegree of i.

Note: This is our first strongly polynomial-time alg for max flow.

We can improve this by being a bit more careful when we choose our paths.

Highest label d∗ = maxactive i di; do pushes only on i such that d(i) = d∗.

Lemma 32. Highest label algorithm has O(
√
mn2) nonsaturating pushes.

Proof. Let K be a parameter (eventually we take K =
√
m). Take N(i) = {j ∈ V : d(j) ≤

d(i)} and the potential function:

Φ =
1

K

∑
active i

|N(i)|

Initially Φ ≤ n2/K (could be up to n active nodes all with label 0, all |N(i)| ≤ n). Increases
in Φ arise from:

• Relabel i can increase Φ by as much as n/K since |N(i)| can go up by at most n.

• Saturating push on (i, j) can increase Φ by as much as n/K by making an inactive
node active.

Consider phases, i.e. periods where d∗ remains constant. How many phases occur?

Phase ends at d∗ increase, which occurs due to relabel of i. Increase in d∗ is at most change
in i. Total amount of increase in d∗ ≤ total change in distance labels which is O(n2).

12

ORIE 6330

Total number of times we can decrease d∗ ≤ total amount we can increase d∗ = O(n2).
So number of phases is also O(n2). Call a phase short if < K nonsaturating pushes; long
otherwise. So number of nonsaturating pushes from short phases is then O(n2K).

Suppose ≥ K nonsaturating pushes, i.e. we are in a long phase. But then there must have
been ≥ K nodes with d(i) = d∗, so Φ must bedcrease by (|N(i)| − |N(j)|)/K ≥ 1 for each
nonsaturating push.

So total number of nonsaturating pushes in long pushes is at most:

Initial Φ + total increase in Φ = O

(
n2

K
+
mn2

K

)
= O

(
mn2

K

)
Total number of nonsaturating pushes is then O

(
n2K + mn2

K

)
= O(n2

√
m) when K =

√
m.

Lemma 33. Let f be an s − t preflow, S an s − t cut, ef (j) = 0∀j /∈ S, j 6= t, and
uf (i, j) = 0∀(i, j) ∈ δ+(S). Then S is a min s− t cut.

Proof. (Sketch). Suppose we keep running push-relabel at this stage.

• Can we push on (i, j) ∈ δ+(S)? No; this edge is saturated.

• Can we push on (j, i)? No ef (j) = 0 (j is saturated).

These properties will be maintaned throughout execution of the algorithm; in the end,
uf (i, j) = 0 for all (i, j) ∈ δ+(S) at end of alg. But by earlier lemma, since f will be a
flow at end of alg, S must be a min s− t cut.

So we can use this as another termination condition.

Lemma 34. We can convert this preflow f to a flow in O(mn) time. (Pf. omitted)

How can we check when such a state is reached? We modify the definition of active nodes.
Call i active only if ef (i) > 0 and d(i) < n; stop if no active nodes. Let S be all nodes that
cannot reach t via arcs of positive residual capacity; then S is a min s− t cut. This is despite
the fact that f is not a flow yet (can still have positive excess on nodes).

Why? By definition, (i, j) ∈ δ+(S) =⇒ uf (i, j) = 0. Now suppose that ef (i) > 0; since we
terminated, must have d(i) ≥ n. Claim that i ∈ S. Otherwise, there is a path P from i to t
on arcs of positive residual capacity; but the max label for any such path is n− 1.

6 Lecture 6 (9/21)

We’re interested in global min-cut problem. Input: directed graph G = (V,A), capacities
u(i, j) ≥ 0∀(i, j) ∈ A. Goal: Find S ⊆ V, S 6= ∅ that minimizes u(δ+(S)).

13

ORIE 6330

Naive alg: For optimal cut S∗, there must be some s ∈ S∗ and t /∈ S∗. Can try all n(n− 1)
possibilities for (s, t) and find min s− t cut for each.

We define a min s-cut to be a minimum global cut such that s ∈ S. Claim: we can find a
min s-cut with n − 1 min s − t cut computations. Just try all other possible vertices as t;
one of them must work.

Claim: We can solve the global min-cut problem in only 2 min s-cut computations (and
hence 2(n− 1) min s− t cut computations).

Idea: pick some s ∈ V . Either it’s in S∗ or it’s not.

1. Find min s-cut S.

2. Reverse all arcs in G, run min s-cut computation.

3. Return smaller of 2.

The second computation finds S ′ with s ∈ S ′ that minimizes u(δ−(S)) = u(δ+(V −S)).

Claim: If we can find a min X − t cut (i.e. cut S such that X ⊆ S, t /∈ S) for any X − t,
then we ca nfind a min s-cut.

Algorithm 5 Min s-cut

1: procedure MinSCut(G)
2: X ← {s}
3: while X 6= V do
4: Pick t ∈ V −X
5: Compute min X − t cut St
6: X ← X ∪ {t}
7: end while
8: Return smallest St
9: end procedure

Let S∗ be a min s-cut, and let t∗ be the first t such that t /∈ S∗. In this iteration, X ⊆ S∗

and t /∈ S∗. So S∗ is a min s − t cut and the algorithm must find an s-cut of the same
capacity.

We define an X-preflow to be like a preflow, but can have ef (i) < 0 for i ∈ X.

Take an X-valid distance labeling for preflow X to be d s.t.:

• d(j) = n for all j ∈ X

• d(i) ≤ d(j) + 1 for all (i, j) : uf (i, j) > 0

• d(t) ≤ |X| − 1

Lemma 35. For X-preflow f with X-valid distance labels d, there is no path in Gf from
any i ∈ X to t on arcs of positive residual capacity.

14

ORIE 6330

Proof. Suppose otherwise; WLOG P starts from i, the only node of X in P . Then d(i) ≤
d(t) + |P | ≤ |X| − 1 + n− |X|, same contradiction as previously.

Lemma 36. Key Lemma: Suppose we have X-preflow f , S an X − t cut s.t. ∀(i, j) ∈
δ+(S), uf (i, j) = 0 and ef (i) = 0,∀i /∈ S, i 6= t. Then S is a min X − t cut.

Proof is again along the same lines as for s− t cut.

We define distance level k to be B(k) = {i ∈ V : d(i) = k}. It is empty if B(k) = ∅. It is a
cut level if ∀i ∈ B(k),∀(i, j) : uf (i, j) > 0, we have d(i) ≤ d(j).

Trivially, any empty distance level is also a cut level.

Main idea of algorithm: Look at sets S(k) = {i ∈ V : d(i) ≥ k} and find a set S(k) such
that the Key Lemma applies. Then S(k) is a min X − t cut.

Lemma 37. If k is a cut level, then ∀(i, j) ∈ δ+(S(k)), uf (i, j) = 0.

Proof. By definition of S(k), for all (i, j) ∈ δ+(S(k)) satisfies d(i) ≥ k and d(j) < k. We
have two cases:

• d(i) = k. Then since k is a cut level and d(i) > d(j), it must be the case that
uf (i, j) = 0.

• d(i) > k. Then since d is X-valid, must have d(i) ≤ d(j)+1. But then d(j) ≥ k, which
means that j ∈ S(k), a contradiction.

As a corollary, if k is a cut level for d(t) < k ≤ n and ef (i) = 0,∀i /∈ S(k), i 6= t then S(k) is
a min X − t cut.

We can modify push-relabel framework to solve for X − t cuts in only 1 iteration.

Note that the looping doesn’t have multiple executions of push-relabel; rather, it picks up
where it left off at the previous iteration. To analyze runtime, we prove a few ideas:

Lemma 38. The non-empty distance levels are consecutive (not including distance level n).

Proof. Starts off true since all nodes other than s have d(i) = 0. Suppose distance k becomes
empty. Let i be the last node in B(k). Then either i was relabeled, or i was the sink and
added to X. The former is impossible since we never relabel the last vertex in a distance
level. The latter does not create non-consecutive gap because we chose sink to be of minimal
distance label.

Other potential issue: We added node to empty B(k) from relabeling. But in this case, it
must receive this label from some j ∈ B(k − 1), so no non-consecutive levels arise.

A brief sketch of the rest of proof (the proofs are omitted for time):

15

ORIE 6330

Algorithm 6 Hao-Orlin (1994)

1: procedure HaoOrlin(G)
2: X ← {s}
3: pick t ∈ V −X, f ← 0
4: d(s)← n, d(i)← 0,∀i 6= s
5: Saturate all arcs out of s
6: `← n− 1 . ` is a cut level
7: while X 6= V do
8: Run push/relabel except only select i for pushes/relabels if d(i) < `
9: If you want to relabel i and |B(d(i))| = 1, then don’t relabel and set `← d(i)
10: If relabel of i makes d(i) ≥ `, then `← n− 1.
11: St ← S(`), X ← X ∪ {t}, d(t)← n
12: Saturate all arcs out of t
13: Pick some t ∈ V −X of minimal distance label
14: if d(t) ≥ ` then `← n− 1
15: end if
16: end while
17: Return smallest St
18: end procedure

Lemma 39. We always have d(t) ≤ |X| − 1.

Lemma 40. If i /∈ X, d(i) ≤ n− 2.

Proof. Follows from the nonempty distance levels being consecutive.

Lemma 41. Throughout execution of the algorithm, ` is a cut level.

Lemma 42. Number of relabels is O(n2). Number of saturating pushes is O(mn). Number
of nonsaturating pushes is O(n2m). So overall runtime is same as push-relabel.

So we can find a min s-cut in O(n2m) time. If we use fancier data structures, can get this
down to O(nm log(n2/m)) time.

7 Lecture 7 (9/23)

Global min cuts in undirected graphs. Input G = (V,E) undirected, capacities u(i, j) ≥
0,∀(i, j) ∈ E.

Goal: Find S ⊆ V, S 6= ∅ minimizing u(δ(S)) =
∑

(i,j)∈δ(S) u(i, j), where δ(S) is set of edges
with exactly one endpoint in S.

We can do this naively by first just making every undirected edge a bidirectional edge with
same capacity both directions.

16

ORIE 6330

Claim: Can solve in n− 1 min s− t cut comps. Capacity of S is same as V − S, so we can
just pick any source and try all other vertices as sinks.

Now define δ(A,B) = {(i, j) ∈ E : i ∈ A, j ∈ B}, δ(A, v) likewise.

Take the MA ordering (“max adjacency”):

1: procedure MAOrdering(G)
2: Pick v1 ∈ V
3: W1 ← {v1}, k ← 1
4: while k < n do
5: Choose vk+1 ∈ V −Wk to maximize u(δ(Wk, vk+1))
6: Wk+1 ← Wk ∪ {vk+1}
7: k ← k + 1
8: end while
9: end procedure

Claim: This alg can be implemented in O(m+n log n) time (similar to Dijkstra’s when using
fib heap).

Lemma 43. For MA ordering v1, . . . , vn, {vn} is a min vn−1 − vn cut.

Proof skipped while we see why this lemma is useful. Either there is some global min cut
S∗ that is a vn − vn−1 cut or not. If so, then u(δ(vn)) ≤ u(δ(S∗)) (since it’s a vn − vn−1

cut) and u(δ(S∗)) ≤ u(δ(vn)) (since S∗ is a global min cut); then {vn} is a global min cut.
If not, then vn−1, vn ∈ S∗ or in V − S∗ for any global min-cut S∗. So contract vn, vn−1 into
one vertex v′, with u(v′, w) = u(vn, w) +u(vn−1, w). This preserves the capacity of all global
min-cuts.

These two cases give us enough to find a min cut: Either {vn} is one and we are finished;
otherwise it isn’t, so we contract and run again.

Algorithm 7 MA ordering min-cut

1: procedure MAOrderMinCut(G)
2: val←∞, S∗ ← ∅, `← n
3: while ` > 1 do
4: Compute MA ordering v1, v2, . . . , v`
5: if u(δ({v`})) < val then
6: val← u(δ(v`))
7: S∗ ← all nodes contracted into v`
8: end if
9: Contract v`−1, v`; update capacities; `← `− 1
10: end while
11: Return S∗

12: end procedure

Theorem 44. The algorithm finds a global mincut in O(n(m+ n log n)) time.

17

ORIE 6330

Proof. (PROOF OF MAIN LEMMA): Let C be a min vn−1−vn cut. Take Wk = {v1, . . . , vk},
Ek = E(Wk), i.e. all edges with both endpoints in Wk. Say u is separated from v if
u ∈ C, v /∈ C or vice versa.

We claim that if vk−1 is separated from vk, then u(δ(Wk−1, vk)) ≤ u(δ(C)∩Ek). When k = n,
this gives u(δ(vn)) = u(δ(Wn−1, vn)) ≤ u(δ(C) ∩En) = u(δ(C)). But u(δ(vn)) is a vn − vn−1

cut, so this implies equality; then {vn} is itself a min vn − vn−1 cut.

Prove this claim by induction. BC: let k be minimal s.t. vk is separated from vk−1. WLOG,
vk /∈ C (and all predecessors in C).

u(δ(Wk−1, vk)) = u(δ(C) ∩ Ek)

Now suppose that this holds for all vj separated from vj−1 for j < k; and that vk is separated
from vk−1. Pick j < k to be maximal such that vj is separated from vj−1.

Edges from vk to Wk−1 either go to Wj−1 or to vertices in Wk−1 −Wj−1.

u(δ(Wk−1, vk)) = u(δ(Wj−1, vk)) + u(δ(Wk−1 −Wj−1, vk))

The first term is at most u(δ(Wj−1, vj)) since we picked vj to minimize this quantity in the
alg. For the latter term, recall that we chose vj to be such that everything after it is on the
same side of C.

≤ u(δ(Wj−1, vj)) + u(δ(C) ∩ (Ek − Ej))
≤ u(δ(C) ∩ Ej) + u(δ(C) ∩ (Ek − Ej))
= u(δ(C) ∩ Ek)

Note: This algorithm may be generalized to find minimizers of symmetric submodular func-
tions.

18

ORIE 6330

8 Lecture 8 (9/28)

Here we see one of the most straightforward applications of randomization:

Algorithm 8 Random Contraction algorithm (David Karger 1993)

1: procedure RandomContraction(G)
2: while |V | > 2 do
3: Pick edge (i, j) at random with prob ∝ u(i, j)
4: Contract (i, j), update capacities
5: end while
6: Return S∗

7: end procedure

Let S∗ be a global min cut with λ∗ = u(δ(S∗)); Take W =
∑

(i,j)∈E u(i, j). Pick edge (i, j)

with prob u(i, j)/W .

We say that S∗ survives a contradiction if chosen edge (i, j) /∈ δ(S∗). Probability S∗ survives
first contraction is 1− λ∗

W
. Since u(δ(i)) ≥ λ∗ for all i ∈ V and W = 1

2

∑
i∈V u(δ(i)), we have

W ≥ n
2
λ∗. It follows that the probability S∗ survives first contraction is:

1− λ∗

W
≥ 1− λ∗

nλ∗/2
= 1− 2

n

Let Wk be the random variable corresponding to the total capacity of the graph after k
contractions. We have Wk ≥ (n− k)λ∗/2, so the probability S∗ survives the kth contraction
given that it survived the first k − 1:

1− λ∗

Wk−1

≥ 1− 2

n− k + 1

Probability of S∗ surviving all contractions:

≥
n−2∏
k=1

(
1− 2

n− k + 1

)
=

n−2∏
k=1

n− k − 1

n− k + 1
=

n∏
`=3

`− 2

`
=

1(
n
2

)
Claim: We can implement Random Contraction alg in O(n2) time.

Theorem 45. We can find a global min cut with high probability in O(n4 lnn) time.

Proof. Run alg k = c
(
n
2

)
lnn times. The probability that S∗ is never returned is:

(
1− 1(

n
2

))c(n
2) lnn

≤ e−c lnn =
1

nc

by independence of runs. The running time is n2k = O(n4 lnn).

19

ORIE 6330

Theorem 46. (Karger, Stein 1996) Can find S∗ with probability Ω(1/ log n) in O(n2 log n)
time. Then repeated application allows for finding S∗ w.h.p. in O(n2 log3 n) time.

Define pn ≡ 1− 2
n
. Consider the following algs:

Alg1

1: procedure RandomContraction(G)
2: Pick k with prob pn(1− pn)k−1

3: for n← 1 to k do
4: Gi ← result of contracting one edge
5: Si ← Alg1(Gi)
6: end for
7: Return smallest Si found
8: end procedure

Alg2

1: procedure RandomContraction(G)
2: Pick r ∈ [0, 1] uniformly at random
3: Let G′ be the result of random contraction
4: S1 ← Alg2(G′)
5: if r ≤ pn then
6: Return S1

7: else
8: S2 ← Alg2(G)
9: Return smaller of S1, S2.
10: end if
11: end procedure

Lemma 47. Expected number of recursive calls in Alg1 in which S∗ survives is at least 1.

Proof. For geometric distribution,
∑∞

k=1 kpn(1− pn)k−1 = 1
pn

.

Each call prob of surviving is at least pn. So expected number of calls that S∗ survives is at
least:

∞∑
k=1

(kpn)pn(1− pn)k−1 = pn

∞∑
k=1

kpn(1− pn)k−1 = 1

“Goldilocks” value of 1: too small means we won’t find the cut; too large means that recursive
tree will blow up exponentially.

Lemma 48. Probability that S∗ is returned by alg is at least 1
2Hn−2

.

Proof. Let P (n) be the probability that S∗ is returned by alg on a graph with n nodes. We
also assume that the prob of no edge in S∗ being contracted on graph with k nodes is exactly

20

ORIE 6330

pk (to simplify analysis). Note then that P (n) is a lower bound on the actual probability.
Clearly P (2) = 1.

P (n) = pn︸︷︷︸
prob. of 1 call

· pn︸︷︷︸
prob S∗ survives

·P (n− 1) + (1− pn)︸ ︷︷ ︸
prob of 2 calls

(1− (1− P (n))︸ ︷︷ ︸
prob. 2nd call fail

(1− pnP (n− 1))︸ ︷︷ ︸
prob 1st call fail

)

Which we can simplify to:

pnP (n) = pnP (n− 1)− pn(1− pn)P (n− 1)P (n)

Divide by P (n)P (n− 1):

1

P (n− 1)
=

1

P (n)
− 2

n
1

P (n)
=

1

P (n− 1)
+

2

n

= 2Hn − 3 +
1

P (2)

= 2Hn − 2

Lemma 49. Expected running time is O(n2 log n).

Proof. Let T (n) be the expected running time on n nodes. Then we have the recursion:

T (n) = T (n− 1) + (1− pn)T (n) +O(n)

pnT (n) = T (n− 1) +O(n)

Substitute in pn = n−2
n

1

n
T (n) =

1

n− 2
T (n− 1) +O

(
n

n− 2

)
1

n(n− 1)
T (n) =

1

(n− 1)(n− 2)
T (n− 1) +O

(
n

(n− 1)(n− 2)

)
Use R(n) = 1

n(n−1)
T (n):

R(n) = R(n− 1) +O

(
1

n

)
= O(Hn) = O(log n)

It follows that T (n) = O(n2 log n).

21

ORIE 6330

State-of-the-art algorithms:

Korger (’96) came up with O(m logn) randomized algorithm.

Kawarabayashi, Thorup (STOC ’15) hasO(m log12 n) deterministic for unit capacity graphs.

Henzinger, Rao, Wang (SODA ’17) has O(m log2 n log log2 n).

Li, Panigrahi (FOCS ’20) has O(m1+ε + (logO(1/ε4) n)MF) (max flow comps) for general
capacity.

Next time: keep moving towards global min-cut.

9 Lecture 9 (9/30)

Gomory-Hu trees: Give representation of ALL min s− t cuts in an undirected graph (some-
times called cut-equivalent tree).

Given G = (V,E) undirected, u(i, j) ≥ 0,∀(i, j) ∈ E. A Gomory-Hu tree is a spanning tree
of G with labels `(e) for all e ∈ T . Let S(e) denote the cut in T when e is removed. For
all s, t ∈ V , let P be the unique s − t path in T ., and let e ∈ T be the edge of minimum
label `(e). Then `(e) = u(δ(S(e))) is the capacity of min s− t cut, and S(e) is a min s− t
cut.

Lemma 50. Suppose for all edges e = (i, j) ∈ T , `(e) = u(δ(S(e))) and S(e) is a min i− j
cut. Then T is a Gomory-Hu tree.

Proof. Suppose `(e) = u(δ(S(e))) for all e = (i, j) ∈ T . Pick any s, t ∈ V and let s =
v1, v2, . . . , vk = t be the unique s − t path in T . Let ei = (vi, vi+1). Define c(p, q) to be the
capacity of minimum p− q cut in G (symmetric so c(p, q) = c(q, p)).

We now show that c(s, t) ≤ mini=1,...,k−1 c(vi, vi−1); showing the reverse inequality gives
equality. The former holds since each edge ei = (vi, vi+1) has S(ei) an s − t cut. For the
other direction, let S∗ be a min s − t cut; suppose that s ∈ S∗. Some For some i, we have
vi ∈ S∗, vi+1 /∈ S∗. Then S∗ is a vi − vi+1 cut and is minimal, so c(vi, vi+1) ≤ c(s, t).

How do we construct Gomory-Hu trees? First think about some ideas for min-cuts. Will use
the fact that u(δ(S)) is symmetric, submodular (both proven via counting arguments):

Submodular:
u(δ(S)) + u(δ(T)) ≥ u(δ(S ∪ T)) + u(δ(S ∩ T))

Symmetric submodular:

u(δ(S)) + u(δ(T)) ≥ u(δ(S − T)) + u(δ(T − S))

Lemma 51. ∀r, s, t ∈ V , c(s, t) ≥ min(c(r, s), c(r, t))

22

ORIE 6330

Proof. Let S be a min s−t cut, s ∈ S, t /∈ S. If r ∈ S, then S is an r−t cut so c(r, t) ≤ c(s, t).
Otherwise, c(r, s) ≤ c(s, t) (same argument).

Corollary 52. The min of c(r, s), c(s, t), and c(r, t) is unique.

Proof. WLOG, c(s, t) is unique min; then above lemma does not hold.

Key Lemma:

Lemma 53. If R is a min r− s cut with r ∈ R, and S a min s− t cut with s ∈ S, assuming
t /∈ R:

(1) If r ∈ S, then R ∩ S is a min r − s cut, R ∪ S is a min s− t cut.

(2) If r /∈ S, then R− S is a min r − s cut, S −R is a min s− t cut, and c(r, t) = c(r, s).

Proof. By submodularity and symmetric submodularity:

c(r, s) + c(s, t) = u(δ(R)) + u(δ(S)) ≥ u(δ(S ∪R)) + u(δ(R ∩ S))

c(r, s) + c(s, t) = u(δ(R)) + u(δ(S)) ≥ u(δ(S −R)) + u(δ(R− S))

In case (1), we know R ∩ S is an r − s cut. We also know R ∪ S is an s − t cut. So the
inequality implies that each of these are minimal cuts.

For (2), R− S is an r− s cut and S −R is an s− t cut; by similar argument as above, they
are both min-cuts. Also note that R is an r − t cut so c(r, t) ≤ c(r, s). S is an s− r cut so
c(r, s) ≤ c(s, t). This implies equality since min not unique (from corollary).

We introduce the algorithm; the general idea is to maintain a partition of the vertices and
update as we go.

Lemma 54. At the end of each iteration, for each e = (ri, rj) ∈ T , S(e) is am in ri− rj cut
and `(e) = c(ri, rj).

Proof. Initially, r and t are the only ri and rj; basically follows directly from alg.

Suppose it holds at end of previous iteration. Algorithm next picks Vi, t ∈ Vi, t 6= ri and X
a min ri − t cut with ri ∈ X.

Two possibilities: rj ∈ X or rj /∈ X. We’ll apply the Key Lemma with s = ri, t = t, r = rj;
R = S(e), S = X.

Case 1: rj ∈ X. Then S(e) ∪X is a min ri − t cut.

Case 2: rj /∈ X. Then X − S(e) is a min ri − t cut and c(rj, t) = c(rj, ri).

23

ORIE 6330

Algorithm 9 ????

1: procedure GomoryHu(G)
2: P ← {V };T ← ∅
3: Pick r ∈ V as representative of V
4: while ∃Vi ∈ P s.t. |Vi| ≥ 2: do
5: Pick t ∈ Vi, t 6= ri (representative of Vi)
6: Compute min ri − t cut X with ri ∈ X
7: for (ri, rj) ∈ T do
8: if rj /∈ X then replace (ri, rj) with (rj, t)
9: end if
10: end for
11: P ← P − {Vi} ∪ {Vi ∩X} ∪ {Vi −X}
12: ri is representative of Vi ∩X and t is representative of Vi −X
13: Add (ri, t) to T with label u(δ(X))
14: end while
15: Return S∗

16: end procedure

10 Lecture 10 (10/5)

The augmenting path algorithms we’ve seen before push flow on the shortest augmenting
path. New idea: Send flow simultaneously on all shortest augmenting paths. Say a flow f is
blocking if for each s− t path of arcs with positive capacity, there is some (i, j) ∈ P that is
saturated f(i, j) = u(i, j). Note: blocking flows are not necessarily max flows (augmenting
paths can exist because residual graph adds in backwards edges).

For flow f , compute shortest path distance d(i) from i to t on positive residual arcs. Observe
that if (i, j) is on a shortest s− t path, then d(i) = d(j) + 1. Additionally, it is always true
that d(i) ≤ d(j) + 1 if uf (i, j) > 0. Let Â = {(i, j) : d(i) = d(j) + 1, uf (i, j) > 0} be the
admissible arcs (residual capacity > 0 and on shortest s− t path). Send flow on all shortest
paths in Gf ⇒ Compute a blocking flow in Â. We show that each time this happens, d(s)
increases by at least one.

Claim: Algorithm maintains a flow f . (Sketch): Flow conservation and skew-symmetry
follow from f, f ′ being flows; capacity constraints from û.

Lemma 55. Distance d(s) increases by at least one in each iteration.

Proof. Let f, d be flow and distance labels in one iteration of the alg; f ′, d′ in the next
iteration. Let P be a shortest augmenting path in Gf ′ . Want to show that d′(s) = |P | > d(s).
We show:

(1) d(i) ≤ d(j) + 1, ∀(i, j) ∈ P .

(2) d(i) ≤ d(j) for some (i, j) ∈ P .

24

ORIE 6330

Algorithm 10 Dinitz’s algorithm

1: procedure Dinitz(G)
2: f ← 0
3: while ∃ augmenting path in Gf : do
4: Compute distances d(i) using arcs of positive residual cap.
5: Â← {(i, j) : d(i) = d(j) + 1, uf (i, j) > 0}

6: û(i, j)←

{
uf (i, j) if (i, j) ∈ Â
0 otherwise

7: Compute blocking flow f̂ in G with capacities û
8: f ← f + f̂
9: end while
10: Return f
11: end procedure

If these hold, then:

d′(s) = |P | −
∑

(i,j)∈P

1 >
∑

(i,j)∈P

(d(i)− d(j)) = d(s)− d(t) = d(s)

(1): Note that (i, j) ∈ P means that uf ′(i, j) > 0. Then either it had positive residual
capacity before: uf (i, j) > 0 =⇒ d(i) ≤ d(j) + 1. Otherwise uf (i, j) = 0 and flow was
pushed backwards. But then (j, i) must be admissible, so d(j) = d(i) + 1 and we are done.

(2): Claim that impossible to have ∀(i, j) ∈ P , d(i) = d(j) + 1 and uf (i, j) > 0. This

would imply that P ⊆ Â; by properties of blocking flow, some arc (i, j) must have been
saturated. so ∃(i, j) ∈ P such that either: d(i) ≤ d(j) or uf (i, j) = 0. First condition proves
the claim; second condition implies that we must have pushed flow back through (j, i) since
uf ′(i, j) > 0. So d(j) = d(i) + 1 and we are done.

This implies that there are at most n iterations of the alg.

Lemma 56. If there are no cycles of positive capacity arcs, can compute a blocking flow in
O(nm) time. Idea: Search for path to t; if you find one, push flow until edge is blocked.
Otherwise, you reach vertex that has no outgoing edges of positive capacity so can trim that
vertex. Each path takes O(n) to find; you remove one edge each time. Can be reduced to
O(m log n) by using dynamic trees (Sleator, Tarjan 1980).

Theorem 57. Dinitz’s algorithm can find a max flow in O(mn log n) time.

Proof. Alg has n iterations. Within each iteration, take O(m) time to compute d(i) and
O(m log n) time to compute blocking flow. Note that there’s no cycles in Â due to the
restriction on distance labels.

25

ORIE 6330

Special case: Unit capacity graphs u(i, j) ∈ {0, 1}∀(i, j) ∈ A. Recall the notion of distance
level B(k) = {i ∈ V : d(i) = k} and the s− t cut S(k) = {i ∈ V : d(i) ≥ k}. We define Λ to
be min(

√
m, 2n2/3).

Lemma 58. Dinitz’s algorithm takes O(Λ) iterations for unit capacity graphs.

Proof. We first show it takes O(
√
m) iterations. After

√
m iterations, d(s) ≥

√
m. We must

have
√
m non-empty distinct distance levels. Note that edges cannot advance more than a

single distance level. Consider cuts S(1), S(2), . . . S(m). There must be some k, 1 ≤ k ≤
√
m

such that at most
√
m arcs from distance level k to k − 1.

But a cut in the residual graph of size at most
√
m implies the max flow has size at most√

m greater than the current flow; since each iteration increases max flow, there are at most√
m more iterations.

To show O(n2/3) iterations, we apply similar proof. After 2n2/3 iterations, exist non-empty
distinct distance levels 0, 1, . . . , 2n2/3. Some k must satisfy |B(k)|, |B(k − 1)| ≤ n1/3. But
then at most n2/3 arcs between them; rest of proof is same as above.

Corollary 59. In Λ iterations, ∃k such that |δ+(S(k))| ≤ Λ. (For next time)

Theorem 60. Can find max flow in unit capacity graphs in O(Λm) time.

11 Lecture 11 (10/7)

Last time: Λ iterations of Dinitz’s alg finds cut with size < Λ. Today: Try to apply this same
notion to general capacity graphs. Goldberg-Rao (1998) runs in O(Λ(m log n)(log(mU)))
time.

Idea: Suppose that we can ensure that all arcs from distance level k to k − 1 have residual
capacity ≤ ∆. Then after Λ blocking flows, ∃k such that:

|δ+(S(k))| ≤ Λ =⇒ uf (δ
+(S(k))) ≤ Λ∆

Then reduce ∆ by a factor of 2 and repeat. This implies cut size in residual graph decreases
by a factor of 2 every Λ iterations. Initially, min cut in Gf has capacity at most mU so we
need O(Λ log(mU)) iterations of finding blocking flows.

Idea: Set `(i, j) =

{
1 if uf (i, j) ≤ ∆

0 otherwise

When computing d(i) = distance of i to t, use the lengths `(i, j). Then alter the definition
of admissible to hold if uf (i, j) > 0 and d(i) = d(j) + `(i, j).

Now consider what should happen in execution of blocking flows alg. What problems could
this cause?

26

ORIE 6330

1. Does d(s) still increase for each blocking flow computation?

2. If admissible arcs are no longer acyclic, cannot use the fast algorithms we already know.

We first consider problem 2. Shrink SCC’s of length zero admissible arcs into single node;
then run blocking flow alg. So this would eliminate cycles of positive capacity nodes and we
apply blocking flow alg. How do we route the flow in original graph?

All arcs within the component have large capacity (at least ∆). Pick a root r in the com-
ponent, build intree of arcs going to r and outtree of arcs leaving r. Use intree to route all
incoming flow to r and outtree to route all outgoing flow from r. If we restrict overall flow
to ∆/4, then use at most ∆/2 capacity on each arc (all of which have capacity ≥ ∆).

Change our goals: At each step, either compute a blocking flow, or find a flow of value
≤ ∆/4.

Algorithm 11 Goldberg-Rao algorithm (Take 1)

1: procedure GoldbergRao(G)
2: F ← mU ; f ← 0
3: while F ≥ 1 do
4: ∆← F

2Λ

5: repeat

6: `(i, j)←

{
1 if uf (i, j) ≤ ∆

0 otherwise

7: Compute distances d(i) to t using lengths `(i, j)
8: Â← {(i, j) ∈ A : d(i) = d(j) + `(i, j), uf (i, j) > 0}
9: Shrink SCCs of Â
10: Find either flow f̂ of value ∆/4 or blocking flow f̂
11: Convert f̂ into flow in original graph
12: f ← f + f̂
13: until 5Λ iterations
14: F ← F/2
15: end while
16: Return f
17: end procedure

Lemma 61. F is an upper bound on the value of max flow in Gf .

Proof. By induction. True initially since mU bounds any flow. After SΛ iterations, either:

(1) In 4Λ iterations, flow increases by ∆/4. So total increase 4Λ(∆/4) = Λ∆ = F/2. Then
remaining flow in Gf ≤ F − F/2 = F/2.

(2) We found a blocking flow in Λ iterations. Then ∃ cut in Gf of capacity ≤ Λ∆ ≤ F/2 so
that the value of max flow in Gf ≤ F/2.

So O(logmU) iterations of dividing F by 2. In each of these, we run blocking flow alg O(Λ)

27

ORIE 6330

times so that the overall runtime is O(Λ(m log n)(logmU)).

Lemma 62. If we find a blocking flow, then d(s) increases. (This solves problem 1)

Proof. Let f, d, ` be the flow, distances, lengths from previous iteration and f ′, d′, `′ from the
next iteration. WTS that for any shortest augmenting path P in Gf ′ :

(a) ∀(i, j) ∈ P, d(i) ≤ d(j) + `′(i, j).

(b) ∃(i, j) ∈ P, d(i) < d(j) + `′(i, j).

Then d′(s) =
∑

(i,j)∈P `
′(i, j) >

∑
(i,j)∈P (d(i)− d(j)) = d(s)− d(t) = d(t).

To prove (a), start by proving that d(i) ≤ d(j) + `(i, j),∀(i, j) ∈ P . If uf (i, j) > 0, then
follows from validity of d. Otherwise, uf (i, j) = 0 and flow must have been pushed backwards
along (j, i). But this requires that d(j) = d(i) + `(j, i) =⇒ d(i) ≤ d(j) ≤ d(j) + `(i, j).

When could it be the case that d(i) ≤ d(j)+`(i, j) but not d(i) ≤ d(j)+`′(i, j)? Need d(i) =
d(j) + 1, `(i, j) = 1 and `′(i, j) = 0. But if d(i) = d(j) + 1, the edge (j, i) is not admissible
so we cannot push flow along it. Then f(i, j) ≤ f ′(i, j) =⇒ uf (i, j) ≥ uf ′(i, j) ≥ ∆. This
implies `(i, j) = 0, a contradiction.

Now it remains to prove (b). But it turns out that this does not actually go through.
Goldberg and Rao modify the alg slightly to make sure things work out. They introduce
special arcs to make case (b) go through. An arc is special if ∆/2 ≤ uf (i, j) ≤ ∆, uf (j, i) ≥
∆, d(i) = d(j). Then set `(i, j) = 0.

New fastest algs:

O(mn) (Orlin 2013) Õ(m
√
n logU) (Lee-Sidford 2014)

Õ(m1/2U1/2 logU) (??? 2016)

Õ(m
√
n logU) (Liu-Sidford 2020)

12 Lecture 12 (10/12)

Min-cost circulation problem.

Input: G = (V,A), costs c(i, j),∀(i, j) ∈ A, capacities u(i, j),∀(i, j) ∈ A, and lower bounds
`(i, j),∀(i, j) ∈ A.

Goal: find a circulation F that minimizes c(f) =
∑

(i,j)∈A c(i, j)f(i, j).

A circulation is f : A→ R≥0 s.t.:

28

ORIE 6330

1. for all (i, j) ∈ A, `(i, j) ≤ f(i, j) ≤ u(i, j) (capacity constraints)

2. for all i ∈ V ,
∑

k:(i,k)∈A f(i, k) =
∑

k:(k,i)∈A f(k, i) (flow conservation)

Related to min-cost flow problem (equivalent problems).

Input: G = (V,A), costs c(i, j),∀(i, j) ∈ A, capacities u(i, j),∀(i, j) ∈ A, and demands/supplies
b(i),∀i ∈ V .

Goal: Find a flow that minimizes
∑

(i,j)∈A c(i, j)f(i, j) s.t. 0 ≤ f(i, j) ≤ u(i, j) and b(i) =∑
k:(i,k)∈A f(i, k) −

∑
k:(k,i)∈A f(k, i). Note that in order for this to be possible, we need∑

i∈V b(i) = 0.

To convert to min-cost circulation problem, add edges from s to vertices with b(i) > 0 and
edges from b(j) < 0 to s with cost 0 and `(s, i) = u(s, i) = b(i) and likewise for (j, s).

Reduction in the opposite direction also straightforward (omitted for time).

Now go back to considering circulations. We can think about the capacity constraints dif-
ferently by using skew symmetry. Instead of `(i, j) ≤ f(i, j) ≤ u(i, j), take u(j, i) = −`(i, j).
Then skew symmetry requires f(i, j) = −f(j, i) so that f(j, i) ≤ u(j, i) iff f(i, j) ≥ `(i, j)
(so we are only considering upper bounds). Cost of the backward edge should cancel out:
c(i, j) = −c(j, i).

New def: A circulation f : A→ R satisfies:

1. f(i, j) ≤ u(i, j), ∀(i, j) ∈ A (capacity constraint)

2. f(i, j) = −f(j, i),∀(i, j) ∈ A (skew symmetry)

3.
∑

k:(k,i)∈A f(k, i) = 0, ∀i ∈ V (flow conservation)

Note that we redefine c(f) = 1
2

∑
(i,j)∈A c(i, j)f(i, j) since we count flow from backwards

edges as well, with c(i, j)f(i, j) + (−c(i, j))(−f(i, j)) = 2c(i, j)f(i, j).

Define the residual graph Gf = (V,A) in much the same manner as before, with residual
capacities uf (i, j) = u(i, j)− f(i, j) ≥ 0. Take Af = {(i, j) ∈ A : uf (i, j) > 0} to be positive
residual capacity arcs. Analogy to augmenting paths: negative-cost cycles Γ ⊆ Af so that
we can push more flow along the cycle. Cost is negative if c(Γ) =

∑
(i,j)∈Γ c(i, j) < 0. Let

δ = min(i,j)∈Γ uf (i, j) > 0. Set:

f ′(i, j) =


f(i, j) + δ if (i, j) ∈ Γ

f(i, j)− δ if (j, i) ∈ Γ

f(i, j) otherwise

This operation is denoted “pushing flow on/around Γ” or Cancel Γ. Note that f ′ obeys
flow conservation, skew symmetry, and capacity constraints. Also not hard to show that
c(f ′) = c(f) + δc(Γ) < c(f), so that we get a better circulation.

We now introduce a dual notion (like min-cut for flows) to show that we can always find a

29

ORIE 6330

negative-cost cycle if f is not already a min-cost circulation. Define node potentials/prices
to be p : V → R and reduced cost of arcs w.r.t. p are cp(i, j) = c(i, j) + p(i)− p(j).

Note that cp(i, j) = −cp(j, i), and also that cp(Γ) = c(Γ) (potentials telescope).

Lemma 63. For potentials p, circulation f , c(f) = cp(f).

Proof. Start with reduced cost:

cp(f) =
1

2

∑
(i,j)∈A

cp(i, j)f(i, j)

=
1

2

∑
(i,j)∈A

(c(i, j) + p(i)− p(j))f(i, j)

= c(f) +
1

2

∑
(i,j)∈A

(p(i)− p(j))f(i, j)

= c(f) +
∑
i∈V

p(i)

 ∑
k:(i,k)∈A

f(i, k)−
∑

k:(k,i)∈A

f(k, i)


= c(f) (flow conservation)

Theorem 64. TFAE:

1. f is a min-cost circulation

2. There is no neg-cost cycle in Af

3. There are potentials p such that cp(i, j) ≥ 0 for all (i, j) ∈ Af

Proof. (1) =⇒ (2): Done above (contrapositive).

(2) =⇒ (3): Add s with edges to everything in V with cost 0. Define p(i) to be the
length/cost of shortest s − i path using arcs in Af and costs c(i, j). Note that p(j) ≤
p(i) + c(i, j) for all (i, j) ∈ Af . So c(i, j) + p(i) − p(j) ≥ 0 and cp(i, j) ≥ 0. Note that
condition (2) is required so that p(i) is well-defined (otherwise we can just repeatedly traverse
negative-cost cycle).

(3) =⇒ (1): Let f̃ be any other circulation. WTS c(f̃) ≥ c(f). Consider f ′ = f̃−f ; it obeys
flow conservation + skew symmetry from f̃ and f . Also note that f ′(i, j) = f̃(i, j)−f(i, j) ≤
u(i, j)− f(i, j) = uf (i, j).

So f ′ is a circulation in Gf . Notice that f ′(i, j) > 0 =⇒ uf (i, j) > 0 =⇒ (i, j) ∈ Af . We

30

ORIE 6330

can write:

c(f̃)− c(f) = c(f̃ − f)

= c(f ′)

= cp(f
′)

=
1

2

∑
(i,j)∈A

cp(i, j)f
′(i, j)

=
∑

(i,j)∈A:f ′(i,j)>0

cp(i, j)f
′(i, j)

≥ 0

Since costs are all nonnegative and the sum is over positive flow edges. So c(f̃) ≥ c(f).

13 Lecture 13 (10/19)

Algorithm 12 Neg-cost cycle canceling (Klein ’67).

1: procedure NegCostCycleCancel(G)
2: Let f be any feasible circulation
3: while ∃ neg-cost cycle Γ in Gf do
4: Cancel Γ, update f
5: end while
6: Return f
7: end procedure

How do we find a feasible circulation? Can use max-flow (hw 1). Integrality property: If all
`, u are integers, then there exists an integer min-cost circulation (essentialyl same proof as
integrality for max flows).

If costs are integers, then this is a pseudopolynomial-time alg. Let U = max(i,j)∈A u(i, j)
and C = max(i,j)∈A |c(i, j)|. Max cost of circulation is at most mCU and min cost is at least
−mCU . If costs are integer, then for any neg-cost cycle Γ, c(Γ) ≤ −1. So we change cost
by at least 1 in each iteration, with O(mCU) iterations overall. Claim that it takes O(mn)
time to find a neg-cost cycle, so overall runtime is O(m2nCU) overall runtime.

Let the mean cost of cycle Γ be c(Γ)
|Γ| ; let µ(f) be the min-mean cost in Gf ; µ(f) :=

minΓ⊆Af

c(Γ)
|Γ| . Note that µf < 0 iff there is a neg-cost cycle in Af ; we can find µ(f) and

Γ in O(mn) time.

Min-mean cycle canceling (Goldberg, Tarjan ’89). Basically the same as negative-cost cycle
canceling except you pick min-mean cost cycle.

We say a circulation f is ε-optimal if ∃ potentials p s.t. cp(i, j) ≥ −ε∀(i, j) ∈ Af .

31

ORIE 6330

Observation: Any circulation is C-optimal (use 0 potentials). Additionally, any 0-optimal
circulation satisfies condition (3) from last time, and is therefore a min-cost circulation.

Lemma 65. If all costs are integer and f is ε-optimal for ε < 1
n

, then f is min-cost circu-
lation.

Proof. If hypothesis true, then ∃ potentials p s.t. cp(i, j) ≥ −ε > − 1
n
∀(i, j) ∈ Af . So

consider any simple cycle Γ ⊆ Af . Then c(Γ) = cf (Γ) > − 1
n
|Γ| ≥ −1. But if the costs are

integer, this means that c(Γ) ≥ 0.

Take ε(f) = min ε such that f is ε-optimal.

Lemma 66. If f is not a min-cost circulation, then ε(f) = −µ(f).

Proof. First show that µ(f) ≥ −ε(f). Note that ∃ potentials p s.t. cp(i, j) ≥ −ε(f)∀(i, j) ∈
Af . Let Γ be min-mean cost cycle. Then:

µ(f) =
c(Γ)

|Γ|
=
cp(Γ)

|Γ|
≥ −ε(f)|Γ|

|Γ|
= −ε(f)

Now show that µ(f) ≤ −ε(f). Set c̄(i, j) = c(i, j)−µ(f)∀(i, j) ∈ Af . For any cycle Γ ⊆ Af :

c̄(Γ) = c(Γ)− |Γ|µ(f) ≥ c(Γ)− |Γ|c(Γ)

|Γ|
≥ 0

Take p(i) = shortest path from s to i using costs c̄(i, j) on arcs in Af . Note that p(j) ≤ p(i)+
c̄(i, j) = p(i) + c(i, j)− µ(f), for all (i, j) ∈ Af . Then cp(i, j) = c(i, j) + p(i)− p(j) ≥ −µ(f)
for all (i, j) ∈ Af . So f is −µ(f) optimal and ε(f) ≤ −µ(f).

Given a circulation f , let f (k) be the circulation after k iterations.

Lemma 67. ε(f (m)) ≤
(
1− 1

n

)
ε(f)

We reserve the proof of the lemma for now, and directly prove the following theorem:

Theorem 68. Min-mean cycle canceling with integer costs takes O(mn ln(nC)) iterations
and therefore O(m2n2 ln(nC)) time. (Goldberg, Tarjan ’89)

Proof. Our initial circulation is always C-optimal. After k = mn ln(nC) iterations, the
lemma says:

ε(f (k)) ≤
(

1− 1

n

)n ln(nC)

ε(f) < e− ln(nC)C =
1

nC
· C =

1

n

But since f (k) is ε-optimal for ε < 1
n

and costs are integer, f (k) is min-cost.

We now prove the lemma.

32

ORIE 6330

Proof. Let f be a circulation, Γ our cycle to cancel, and f ′ the resulting circulation. There
exist potentials p s.t. cp(i, j) ≥ −ε(f) for all (i, j) ∈ Af .

µ(f) =
cp(Γ)

|Γ|
≥ −ε(f)|Γ|

|Γ|
= −ε(f)

But µ(f) = −ε(f), so cp(i, j) = −ε(f) for all (i, j) ∈ Γ. We now show that cp(i, j) ≥ −ε(f)
for all (i, j) ∈ Af ′ (the new circulation). If (i, j) ∈ Af ′ , then either:

• (i, j) ∈ Af so that cp(i, j) ≥ −ε(f).

• (i, j) /∈ Af , so we must have pushed flow in (j, i). But (j, i) ∈ Γ implies cp(j, i) = −ε(f)
so cp(i, j) = −cp(j, i) = ε(f) ≥ 0.

Note that this implies ε(f (1)) ≤ ε(f). More generally, when we cancel Γ s.t. ∀(i, j) ∈
Γ,−ε(f) ≤ cp(i, j) ≤ 0, we only add arcs to Af ′ satisfying cp(i, j) ≥ 0. Consider having
proceeded m iterations. Two cases:

1. For all Γ canceled, cp(i, j) < 0,∀(i, j) ∈ Γ. But each iteration can only add arcs with
positive reduced cost to Af ′ and must saturate an arc (removing it from Af) with cp(i, j) <
0. After m iterations, all arcs with positive residual capacity have nonnegative reduced
costs, and no negative cycles remain (so f (m) is a min-cost circulation).

2. In some iteration k, cancel Γ with cp(i, j) = 0 for some edge in Γ. Then:

−ε(f (m)) > −e(f (k)) = µ(f (k)) =
cp(Γ)

|Γ|
≥ −ε(f)(|Γ| − 1)

|Γ|
≥
(

1− 1

n

)
(−ε(f))

Dividing through the negative sign gives the desired inequality.

14 Lecture 14 (10/21)

We now consider a different runtime analysis of the min-mean cost cycle canceling alg.
We aim to instead achieve a strongly polynomial runtime (eliminating the reliance on C).
Historical significance: still unknown whether LP can be solved in strongly polynomial time;
Tardos (1985) showed strongly polynomial runtime for this special problem.

Idea: Show that after a certain number of iterations, flow on a new arc becomes fixed. We
say an arc (i, j) is ε-fixed if flow f(i, j) is the same for all ε-optimal flows.

Lemma 69. For any circulation f , any S ⊆ V , S 6= ∅, we have
∑

(k,`)∈δ+(S) f(k, `) = 0.

Proof. By definition of flow conservation,
∑

k:(k,i)∈A f(k, i) = 0 for any i. So sum over all

33

ORIE 6330

vertices not in S.

0 =
∑
i/∈S

∑
k:(k,i)∈A

f(k, i)

=
∑
i/∈S

 ∑
k∈S:(k,i)∈A

f(k, i) +
∑

k/∈S:(k,i)∈A

f(k, i)


The latter sum cancels out to 0 by skew symmetry.

=
∑

(k,i)∈δ+(S)

f(k, i)

Lemma 70. Let ε > 0, f a circ, p potentials s.t. f is ε-optimal w.r.t. p. If cp(i, j) ≤ −2nε,
then (i, j) is ε-fixed.

Idea/proof sketch: Suppose ∃ ε-optimal f ′ such that f ′(i, j) 6= f(i, j). Then ∃Γ ⊆ Af ′
including (i, j). Then

−ε(f) = µ(f ′) ≤ c(Γ)

|Γ|
< −ε

so that ε(f ′) > ε and f ′ is not ε-optimal, contradiction.

Proof. Suppose that (i, j) is not ε-fixed, so that ∃f ′ which is ε-optimal with f ′(i, j) 6= f(i, j).
Since cp(i, j) ≤ −2nε < ε and f is ε-optimal w.r.t. p, (i, j) /∈ Af . This implies u(i, j) =
f(i, j) > f ′(i, j).

Consider A< := {(k, `) : f ′(k, `) < f(k, `)}. We want to show that ∃Γ ⊆ A< such that
(i, j) ∈ Γ. Note that f ′(k, `) < f(k, `) ≤ u(k, `) =⇒ A< ⊆ Af ′ .

Let S = {vertices reachable from j using arcs in A<}. WTS i ∈ S, so that (i, j) is in
some cycle Γ ⊆ A<. Suppose i /∈ S. By above lemma,

∑
(k,`)∈δ+(S) f(k, `) = 0 and∑

(k,`)∈δ+(S) f
′(k, `) = 0. Subtracting these:∑

(k,`)∈δ+(S)

(f(k, `)− f ′(k, `)) = 0

But f ′(i, j) < f(i, j), so that f ′(j, i) > f(j, i) by skew-symmetry. By assumption, (j, i) ∈
δ+(S). So (j, i)’s contribution to the sum is negative, and there must be some (k, `) ∈ δ+(S)
with f(k, `) > f ′(k, `). But then k ∈ S, ` /∈ S and (k, `) ∈ A< requires ` ∈ S since we can
also reach k from `. So i ∈ S and we have our desired cycle Γ ⊆ A< ⊆ Af ′ including (i, j).

For any (k, `) ∈ γ, we have f ′(k, `) < f(k, `) and therefore u(`, k) ≥ f ′(`, k) > f(`, k) =⇒
(`, k) ∈ Af . But then cp(`, k) ≥ −ε so that cp(k, `) ≤ ε. Then for Γ we have:

c(Γ)

|Γ|
=
cp(Γ)

|Γ|
=

1

|Γ|

cp(i, j) +
∑

(k,`)∈Γ\{i,j}

cp(k, `)

 ≤ 1

|Γ|
(−2nε+ (|Γ| − 1)ε) < −ε

34

ORIE 6330

Then u(f ′) ≤ c(Γ)
|Γ| < −ε. But ε(f ′) = −µ(f ′) > ε. So then f ′ is not ε-optimal, a contradic-

tion.

Lemma 71. Let f and f ′ be ciruclations such that ε(f ′) ≤ ε(f)/2n and f is not min-cost.
Then there are strictly more ε(f ′)-fixed arcs than ε(f)-fixed arcs.

Proof. Since ε(f ′) < ε(f), any ε(f)-fixed arc is also ε(f ′)-fixed; only need to show that there
is some ε(f ′)-fixed arc that is not ε(f)-fixed. Let p be potentials s.t. f is ε(f)-optimal. Note
that f is not min-cost, so let Γ be a min-mean cost cycle in Gf . Then:

−ε(f) = µ(f) =
cp(Γ)

|Γ|
≥ −ε(f)|Γ|

|Γ|
= −ε(f)

So that cp(i, j) = −ε(f) for all edges in Γ. Note that none of these arcs are ε(f)-fixed, since
cancelling Γ will modify flow on all of these arcs and resulting flow is still ε(f)-optimal.

Now let f ′ be ε(f ′)-optimal w.r.t. potentials p′. Consider the same cycle Γ.

cp′(Γ)

|Γ|
= µ(f ′) = −ε(f) ≤ −2nε(f ′)

So there must exist some (i, j) ∈ Γ with cp′(i, j) ≤ −2nε(f ′). Then (i, j) is ε(f ′)-fixed from
previous lemma but not ε(f)-fixed, as desired.

Theorem 72. Min-mean cost cycle canceling takes O(m2n lnn) iterations and O(m3n2 lnn)
time.

Proof. Claim a new arc is fixed every k = mn ln 2n iterations. Pick any circulation f ; then

ε(f (k)) ≤
(
1− 1

n

)n ln 2n
ε(f) < e− ln(2n)ε(f) = ε(f)

2n
. Applying the lemma gives a new arc fixed,

so that there are at most km iterations.

15 Lecture 15 (10/26)

Min-cost circulations: Wallacher’s algorithm.

Idea: Find neg-cost cycle in Af whose cancellation decreases cost by as much as possi-
ble.

min
Γ⊆Af

c(Γ) · min
(i,j)∈Γ

uf (i, j)

Claim: NP-hard by reduction from Ham cycle (just set all costs to -1 and capacities to 1).
So instead, we try to minimize:

min
Γ⊆Af

c(Γ)

min(i,j)∈Γ
1

uf (i,j)

35

ORIE 6330

Instead, take the cycle that minimizes:

β(f) = min
Γ⊆Af

c(Γ)∑
(i,j)∈Γ

1
uf (i,j)

Lemma 73. Given circulation f , ∃f1, . . . f`, ` ≤ m such that f =
∑`

i=1 fi, c(f) =
∑`

i=1 c(fi)
and fi has positive flow only on arcs in a simple cycle.

Proof. Similar to lemma for flows. Find a cycle by extending edges; pull the cycle out.
Canceling saturates an edge, so can only happen up to m times.

Lemma 74. Let f ∗ be a min-cost circulation, f a circulation that is not min-cost. Then
β(f) ≤ 1

m
(c(f ∗)− c(f)).

Proof. Note that f ∗ − f is a feasible circulation in Gf . Use flow decomposition lemma on
f ∗ − f in Gf . Get f1, . . . , f` with ` ≤ m; let Γi be the cycle associated with fi and let δ(i)
be amt of flow on Γi, so c(f) =

∑
i δ(i)c(fi).

Let β(Γ) = c(Γ)∑
(i,j)∈Γ

1
uf (i,j)

.

c(f ∗)− c(f) =
∑̀
k=1

c(fk)

=
∑̀
k=1

δkc(Γk)

=
∑̀
k=1

δkβ(Γk)
∑

(i,j)∈Γk

1

uf (Γk)

≥ β(f)
∑̀
k=1

δk
∑

(i,j)∈Γk

1

uf (Γk)

= β(f)
∑

(i,j)∈Af

1

uf (i, j)

∑̀
k=1

δk

≥ mβ(f)

Corollary 75. Suppose costs c, capacities u are integer. Then if β(f) > − 1
m

, f is a min-cost
circulation.

Proof. f , f ∗ must be integer flows. This also holds for their costs. Previous lemma implies
− 1
m
< β(f) ≤ 1

m
(c(f ∗)− c(f)) so that their costs must match.

36

ORIE 6330

Algorithm 13 Wallacher’s Algorithm

1: procedure Wallacher(G)
2: Let f be any feasible circulation
3: while β(f) ≤ − 1

m
do

4: Let Γ ⊆ Af such that β(f) = β(Γ)
5: Cancel Γ, Update f
6: end while
7: Return f
8: end procedure

This gives us the foundation behind our algorithm.

Lemma 76. Let f be a circulation that is not min cost, and let f ′ be the result of canceling
any Γ ⊆ Af . Then c(f ′)− c(f) ≤ β(Γ).

Proof. Let δ = min(i,j)∈Γ uf (i, j), i.e. amount of flow pushed on Γ. Then:

c(f ′)− c(f) = δ(c(Γ)) = δβ(Γ)
∑

(i,j)∈Γ

1

uf (i, j)
≤ β(Γ)

Corollary 77. If β(Γ) = β(f), then c(f ′)−c(f) ≤ β(Γ) ≤ 1
m

(c(f ∗)−c(f)). So c(f ′)−c(f ∗) ≤(
1− 1

m

)
(c(f)− c(f ∗)).

This form lends itself to the standard method of repeated application:

Theorem 78. Suppose costs, capacities are integers. Then Wallacher’s algorithm takes
O(m ln(mCU)) iterations, each of which takes O(mn ln(mCU)) time (we won’t prove this
runtime). This gives overall runtime O(m2n ln2(mCU)) time.

Proof. If f (k) is circulation after k iterations, then c(f (k))− c(f ∗) ≤
(
1− 1

m

)k
(c(f)− c(f ∗)).

For any circulation f , c(f)− c(f ∗) ≤ 2mCU . So after k = m ln(2mCU) iterations, we have:

c(f (k))− c(f ∗) ≤
(

1− 1

m

)m ln(2mCU)

(c(f)− c(f ∗)) < e− ln(2mCU)2mCU = 1

Since costs, capacities integer, this implies optimality.

Now we work on improving runtime. Instead of finding the most-improving cycle, we search
for a “good enough” cycle (similar to the ∆-scaling we did for max flows). We maintain

an estimate β̂ on value of β(f). for circulation f , consider costs c̄(i, j) = c(i, j) − β̂
uf (i,j)

.

Then for Γ ⊆ Af , c̄(Γ) < 0 iff c(Γ) < β̂
∑

(i,j)∈Γ
1

uf (i,j)
, i.e. β̂ > βΓ. This leads to the below

algorithm:

Define a β̂-scaling phase to be a sequence of iterations in which β̂ has the same value.

37

ORIE 6330

Algorithm 14 Scaling Wallacher’s Algorithm

1: procedure ScalingWallacher(G)
2: Let f be any feasible circulation
3: β̂ ← −CU
4: while β̂ ≤ − 1

2m
do

5: if ∃Γ ⊆ Af s.t. ĉ(Γ) < 0 then
6: Cancel Γ, update f
7: else
8: β̂ ← β̂/2
9: end if
10: end while
11: Return f
12: end procedure

Lemma 79. There are at most 2m iterations per β̂-scaling phase.

Proof. First show that β̂ ≤ β(f)/2 at the start of any β̂-scaling phase. Initially, β̂ = −CU .
For any cycle Γ, we have:

c̄(Γ) = c(Γ) + CU
∑

(i,j)∈Γ

1

uf (i, j)
≥ c(Γ) + C|Γ| ≥ 0

So β̂ ≤ β(Γ) for all Γ, and β̂ ≤ β(f) ≤ β(f)/2.

We now consider the end of any β̂-scaling phase. At this point, C̄(Γ) ≥ 0 for all Γ ⊆ Af (so

β̂ ≤ β(f)). We divide β̂ by 2 to start a new β̂-scaling phase, so now β̂ ≤ β(f)/2.

Let f be circulation at the start of β̂-scaling phase, f ∗ a min-cost circulation. Then:

β̂ ≤ β(f)/2 ≤ 1

2m
(c(f ∗)− c(f))

If we cancel a cycle Γ, the cost of circulation changes by β(Γ) < β̂ (since c̄(Γ) < 0). But we
also know β̂ ≤ 1

2m
(c(f ∗) − c(f)). So there can be at most 2m iterations in each β̂-scaling

phase.

Theorem 80. Scaling Wallacher takes O(m lg(mCU)) iterations, for overall O(m2n ln(mCU))
time.

Proof. Initially, β̂ = −CU and we stop when β̂ > − 1
2m

, for a total of O(log2(mCU)) β̂-

scaling phases, each of which contains at most 2m iterations. We may stop when β̂ > − 1
2m

,
as this implies βf > − 1

m
from above proof.

38

ORIE 6330

Algorithm 15 Successive Approximation (Godlberg, Tarjan ’90)

1: procedure SuccessiveApproximation(G)
2: Let f be any feasible circulation
3: ε← C, p(i)← 0∀i ∈ V
4: while ε ≥ 1/n do
5: ε← ε/2
6: (f, p)← FindεOptCirc(f, ε, p)
7: end while
8: Return f
9: end procedure

16 Lecture 16 (10/28)

Recall that if f ε-optimal for ε < 1/n with costs, caps integer, then f is min-cost.

Idea: FindεOptCirc takes a 2ε-optimal circulation f (w.r.t. p) as input and produces
ε-optimal circulation f ′ (w.r.t. p’) as output. Same argument as before shows that we only
need O(lg(nC)) iterations.

Algorithm 16 Strongly polynomial successive approximation

1: procedure StrongPolySuccessiveApproximation(G)
2: Let f be any feasible circulation
3: while true do
4: Compute ε(f), potentials p s.t. f is ε(f)-optimal w.r.t. p
5: if ε(f) > 0 then
6: ε← ε(f)/2
7: (f, p)← FindεOptCirc(f, ε, p)
8: else
9: Return f
10: end if
11: end while
12: end procedure

Lemma 81. The algorithm takes O(m log n) iterations.

Proof. Pick any iteration with circ f . After log2(2n) iterations later, we must have f ′ s.t.
ε(f ′) ≤ ε(f)/2n. But we proved that this implies at least one more fixed arc. So after
m log2(2n) iterations, all arcs are fixed and we must have a min-cost circ.

But how do we actually implement the FindεOptCirc subroutine? Define a pseudoflow
f : A→ R to be s.t.:

• f(i, j) = −f(j, i),∀(i, j) ∈ A

• f(i, j) ≤ u(i, j), ∀(i, j) ∈ A

39

ORIE 6330

Note that we do not enforce flow conservation (like when we introduced preflows). Define
the excess ef (i) to be the net flow into i, i.e.

∑
k:(k,i)∈A f(k, i). If ef (i) < 0, then we

call this a deficit. Note the distinction between preflow: we do not require excesses to be
nonnegative.

Our plan is as follows: Use the 2ε-optimal circulation to get an ε-optimal pseudoflow f ,
which we then transform into an ε-optimal circulation. Idea: Set f(i, j) = u(i, j)∀(i, j) ∈ Af
satisfying cp(i, j) < 0.

MISSED THIS SECTION, FILL IN LATER

What if i is active, but no admissible (i, j) ∈ Af out of i? Then cp(i, j) ≥ 0 for all (i, j) ∈ Af .
Then we can relabel i: Set p(i) = max(i,j)∈Af

(p(j) − c(i, j) − ε). Note that p(i) ≥ p(j) −
c(i, j)− ε so that c(i, j) + p(i)− p(j) ≥ ε, i.e. we maintain ε-optimality (with equality in at
least one case).

Observe that we must have reduced p(i) by at least ε, since cp(i, j) ≥ 0 before and cp(i, j) =
−ε after relabel. Additionally, cp(k, i) ≥ −ε for all (k, i) ∈ Af before relabel. After relabel,
we must have cp(k, i) ≥ 0 since we decreased p(i) by at least ε, i.e. no admissible arcs enter
i.

1: procedure Push(i, j)
2: δ ← min(ef (i), uf (i, j))
3: f(i, j)← f(i, j) + δ, f(j, i)← f(j, i)− δ
4: end procedure

1: procedure Relabel(i)
2: p(i)← max(i,j)∈Af

(p(j)− c(i, j)− ε)
3: end procedure

Algorithm 17 Push-relabel ε-Optimal Circulation

1: procedure FindεOptCirc(G)
2: For all (i, j) ∈ Af , if cp(i, j) < 0 then f(i, j)← u(i, j) and f(j, i)← u(j, i).
3: while ∃ active i (ef (i) > 0) do
4: if ∃j such that (i, j) admissible, i.e. uf (i, j) > 0, cp(i, j) < 0 then
5: Push(i, j)
6: else
7: Relabel(i)
8: end if
9: end while
10: Return f, p
11: end procedure

Lemma 82. Let f be a pseudoflow, f ′ a circulation. For any i s.t. ef (i) > 0, there exists
a path P ⊆ Af to a node j such that ef (j) < 0. Furthermore, ∀(k, `) ∈ P, ∃(`, k) ∈ A′f (all
reverse edges in P have positive residual capacity w.r.t. f ′).

Proof. We find P ⊆ A< = {(k, `) ∈ Af : f(k, `) < f ′(k, `). Note that f(k, `) < f ′(k, `) ≤

40

ORIE 6330

u(k, `) =⇒ (k, `) ∈ Af and f ′(`, k) < f(`, k) ≤ u(`, k) =⇒ (`, k) ∈ Af ′ (so that we get
these conditions for free).

Pick i s.t. ef (i) > 0. Let S be the set of vertices reachable from i in A<. We want to show
∃j ∈ S s.t. ef (j) < 0. Take:

−
∑
k∈S

ef (k) = −
∑
k∈S

∑
`:(`,k)∈A

f(`, k)

=
∑
k∈S

∑
`:(k,`)∈A

f(k, `)

=
∑
k∈S

 ∑
`∈S:(k,`)∈A

f(k, `) +
∑

`/∈S:(k,`)∈A

f(k, `)


=
∑
k∈S

∑
`/∈S:(k,`)∈A

f(k, `)

=
∑

(k,`)∈δ+(S)

f(k, `)

Observe: (k, `) ∈ δ+(S) requires (k, `) /∈ A<, i.e. f(k, `) ≥ f ′(k, `). Applying over all
excesses:

−
∑
k∈S

ef (k) =
∑

(k,`)∈δ+(S)

f(k, `) ≥
∑

(k,`)∈δ+(S)

f ′(k, `) = 0

Last equality by lemma on circulations. But i ∈ S with positive excess; since the sum of
excesses of S is nonpositive, some vertex in S must have a deficit.

Lemma 83. For any i, p(i) decreases by at most 3nε.

Proof. Let f ′, p′ be 2ε-optimal circulation, potentials on input and f, p be ε-optimal pseud-
oflow, potentials at some point in alg. If p(i) changes, ef (i) > 0 =⇒ ∃j s.t. ef (j) < 0
and i → j path P exists with P ⊆ Af and P ′ (reverse path) exists P ′ ⊆ Af ′ . So
(k, `) ∈ P =⇒ (k, `) ∈ Af =⇒ cp(k, `) ≥ −ε.

Then:

−ε|P | ≤
∑

(k,`)∈P

cp(k, `) =
∑

(k,`)∈P

(c(k, `) + p(k)− p(`)) = p(i)− p(j) +
∑

(k,`)∈P

c(k, `)

Same idea on the reverse path shows

−2ε|P ′| ≤ p′(j)− p′(i) +
∑

(k,`)∈P

c(`, k)

Add these inequalities together:

−3ε|P | ≤ p(i)− p(i′) + p′(j)− p(j) = p(i)− p′(i)

41

ORIE 6330

Because j has a deficit now; it must have also had one beforehand (since we never create a
new deficit).

Corollary 84. Number of relabels is O(n2)

Proof. Each vertex relabeled at most 3n times. Relabels decrease p(i) by at least ε and p(i)
decreases by at most 3nε over the course of the algorithm, so ≤ 3n2 overall relabels.

17 Lecture 17 (11/2)

We analyze pushes like before: saturating pushes push δ = uf (i, j) flow on (i, j) and non-
saturating pushes push δ = ef (i) < uf (i, j).

Lemma 85. Number of saturating pushes is O(mn).

Proof. Pick any arc (i, j); argue that we can only have O(n) saturating pushes. Initially,
cp(i, j) ≥ 0 so we need to relabel i before any pushes on (i, j). After a saturating push, we
have to push on (j, i) to make (i, j) admissible again. But then (j, i) has to be admissible,
which requires cp(j, i) < 0. Then cp(i, j) > 0, which implies that we must relabel i before we
can push on (i, j) again. So each edge has at most 3n saturating pushes, for at most 3mn
overall.

Lemma 86. The set of admissible arcs is always acyclic.

Proof. By induction. True initially since no admissible arcs.

Consider pushes and relabels. A push on (i, j) can make (i, j) not admissible (can’t create a
cycle) and cannot make (j, i) admissible since cp(i, j) < 0. So no new edges are introduced,
and no new cycle can exist.

Now consider a relabel of i. We know from above that no admissible arcs enter i so we can’t
create a cycle.

Lemma 87. Number of nonsaturating pushes is O(mn2).

Proof. Let Φ(i) be the number of vertices reachable from i on admissible arcs (always at
least 1). Take Φ =

∑
i active Φ(i). Initially, no admissible arcs so Φ ≤ n. At the end, no

active nodes so Φ = 0 (and always bounded below by 0). How can Φ change?

• Saturating pushes on (i, j) can increase Φ by at most n each time by making j active.

• Relabeling i makes i active, so can add up to n new reachable nodes from i. Note also
that i has no incoming admissible arcs so other values of Φ(j) are unaffected.

• Nonsaturating push on (i, j) changes Φ by at most Φ(j)−Φ(i), since i is made inactive.
But we know Φ(i) > Φ(j) since i can reach j (we are pushing, so admissible arc) and

42

ORIE 6330

everything j reaches, but j cannot reach i (acyclic by lemma above). This implies that
Φ decreases by at least 1 for each nonsaturating push.

Total amount Φ can increase is at most n+n(3n2+3mn) so the total number of nonsaturating
pushes is at most this total increase in Φ and is O(mn2).

So the FindεOptCirc subroutine runs in O(mn2) time. With more care, this can be improved
to O(mn log(n2/m)).

Theorem 88. (Goldberg, Tarjan 1990) Successive approximation finds a min-cost circula-
tion in O(mn2 · min(log(nC),m log n)) time. This can be improved with the more optimal
subroutine.

Note that this is a strongly polynomial runtime. How does this compare with the state-of-
the-art?

• Orlin (1993): O(m log n(m+ n log n))

• Lee, Sidford (2014) Õ(m
√
n logO(1)(CU))

In practice, successive approximation runs quickly. So does network simplex (which we will
see later), despite not being poly-time in general.

18 Lecture 18 (11/4)

Specialization of the Simplex Method to min-cost circulations.

(Primal) network simplex maintains a spanning tree T , a feasible circulation f , and potentials
p such that:

1. If both uf (i, j) > 0, uf (j, i) > 0, then {i, j} ∈ T .

2. If {i, j} ∈ T , then cp(i, j) = cp(j, i) = 0.

Given T , easy to compute p s.t. condition 2 holds. Pick arbitrary root r and set p(r) = 0;
then just fill in by BFS.

Given feasible circulation f , compute circulation f ′ and spanning tree T to satisfy the first
condition, with c(f ′) ≤ c(f). Consider E = {{i, j} : uf (i, j) > 0, uf (j, i) > 0}. If it has a
cycle, one of the directions is non-positive-cost, so can cancel to saturate an edge. If there’s
no cycles, we can just add edges to span.

Each nontree arc (i, j) ∈ Af defines a basic cycle Γ(i, j), the cycle formed by adding (i, j)
into T . Observe that cp(Γ(i, j)) < 0 iff cp(i, j) < 0 (all costs in T are 0).

If we cancel Γ(i, j), then some (k, `) ∈ Γ(i, j) is saturated (perhaps (k, `) = (i, j)); add {i, j}
to T and remove {k, `} from T . We say that {i, j} enters T and {k, `} leaves T ; pivot on
(i, j).

Note that at termination, no negative-cost cycles can exist in Af (all edges in T are 0-cost

43

ORIE 6330

Algorithm 18 Network Simplex

1: procedure FindεOptCirc(G)
2: Let f be a feasible circulation
3: Find f, T, p obeying our properties (1), (2)
4: while ∃ nontree arc (i, j) ∈ Af with cp(i, j) < 0 do
5: Cancel Γ(i, j)
6: Update f, T, p
7: end while
8: Return f
9: end procedure

w.r.t. p and no negative cost edges outside it exist), so we have a min-cost circulation.

(Zadeh ’73) Natural pivot rules lead to exponential number of pivots.

(Orlin ’97) Can choose a pivot each iteration so that at most O(nm ·min(log(nC),m log n))
pivots (not similarity to successive approximation runtime). Each pivot takes O(n) amortized
time, for O(n2m ·min(log(nC),m log n)) overall.

Research question: Are there other poly-time pivot rules? Can show that if we can cancel
Γ(i, j) s.t. cp(Γ(i, j)) ≥ 0, then other poly-time pivot rules exist.

Typical problem: max s− t flow problem over time, (aka max dynamic flow). Inputs:

• Directed G = (V,A)

• Capacities u(i, j) ≥ 0 for all (i, j) ∈ A, integer

• Source s ∈ V , sink t ∈ V

• Transit time τ(i, j) ≥ 0 for all (i, j) ∈ A, integer

• Time bound T

Idea: Putting unit of flow in i at time t, arrives at j at time t + τ(i, j). u(i, j) limits the
amount of flow that can be put into the arc at any given time, e.g. the rate of the flow.

Goal: Find max amount of flow that can be sent from s starting at time 0 to arrive at sink
t by time T .

We introduce the notion of a time-expanded network: make copies of each vertex for each
time, v(0), . . . , v(T). Arcs go from vertices i(t), j(t + τ(i, j)) with capacity u(i, j) and
“holdover arcs” i(t) to i(t + 1) (flow can remain at the same vertex). Then just solve
max flow problem from s(0) to t(T). Problem: Not poly-time, since network is exponential
in size of input (nT vertices).

Suppose we have s− t path P such that τ(P) ≡
∑

(i,j)∈P τ(i, j) and let u = min(i,j)∈P u(i, j).

Can send u units of flow along P at time 0, 1, 2, . . . , T − τ(P) (and guarantee flow reaches
t). Call a flow over time along a path like this a temporally repeated flow.

44

ORIE 6330

Lemma 89. Given a standard s− t flow f , decomposition of f into flows f1, . . . , f` each on
a s − t path P1, . . . , P` s.t. τ(Pi) ≤ T for 1 ≤ i ≤ `, then the value of s − t flow over time
by temporally repeating these paths is:

(T + 1)|f | −
∑

(i,j)∈A

τ(i, j)f(i, j)

Proof. We first show that this temporal repetition leads to a valid flow over time. At any
time t, how much flow is entering (i, j)? Every path Pk using (i, j) sends fk(i, j) flow;
capacity constraints satisfied since they hold for f .

How much flow is sent over time? Each path Pk sends |fk| flow at each timestep 0, 1, . . . , T −
τ(Pk):

∑̀
k=1

|fk|(T + 1− τ(Pk)) =
∑̀
k=1

|fk|T + 1−
∑̀
k=1

|fk|τ(Pk))

= (T + 1)|f | −
∑̀
k=1

|fk|
∑

(i,j)∈Pk

τ(i, j)

= (T + 1)|f | −
∑

(i,j)∈A

τ(i, j)
∑

k:(i,j)∈Pk

|fk|

= (T + 1)|f | −
∑

(i,j)∈A

τ(i, j)f(i, j)

19 Lecture 19 (11/9)

Continuing from last time: How can we find a flow to maximize this value? Maximizing
(T+1)|f |−

∑
(i,j)∈A τ(i, j)f(i, j) is equivalent to minimizing

∑
(i,j)∈A τ(i, j)f(i, j)−(T+1)|f |.

We find a min-cost circulation to minimize this value. Create a new instance (V,A′) where
c(i, j) = τ(i, j), u(i, j) = u(i, j), c(j, i) = −τ(i, j), u(j, i) = 0 and c(t, s) = −T + 1, u(t, s) =
∞, c(s, t) = T + 1, u(s, t) = 0.

Basic idea: The (t, s) edge accounts for the −(T + 1)|f | term. Thinking about negative-cost
cycling: Intuition is that this s− t edge is always going to be part of any negative-cost cycle,
so any cancellation and change in flow must push along this edge.

But it’s not altogether clear that the best temporally repeating flow is also the best flow
over time (perhaps we can do better by changing what we do at different times). In fact, we
can prove that it is indeed optimal:

Theorem 90. (Ford, Fulkerson ’62) The value of the max s − t flow over time equals the
value of the maximum temporally repeated flow.

45

ORIE 6330

Proof. We consider again the time-expanded network. Consider the min s(0)− t(T) cut. We
show that the max temporally repeated flow has the same value as the capacity of this cut.

Recall that f is min-cost iff ∃p such that cp(i, j) ≥ 0,∀(i, j) ∈ Af . If the reduced cost
is negative, we must have f(i, j) = u(i, j). The cost of the circulation is c(f) = cp(f) =
1
2

∑
(i,j)∈A′ c(i, j)pf(i, j) =

∑
(i,j)∈A′:cp(i,j)<0 cp(i, j)f(i, j) (we take out the positive reduced

cost arcs). But this is simply
∑

(i,j)∈A τ(i, j)f(i, j)− (T + 1)f(t, s).

Assume f(t, s) > 0 so that circulation has negative cost, and let S be a cut in the time-
expanded network formed by taking:

S = {i(θ) : i ∈ V, p(i)− p(s) ≤ θ}

So for x = p(i)− p(s), we get nodes i(x), . . . , i(T).

Note that s(0) ∈ S, but t(T) is not. We assumed f(t, s) > 0 and hence f(s, t) < 0, both
have positive residual capacity. So cp(t, s) ≥ 0 and cp(s, t) ≥ 0; by skew symmetry, they
must both be 0. Then 0 = cp(t, s) = c(t, s) + p(t)− p(s) =⇒ p(t)− p(s) = T + 1. This in
turn demonstrates that all t(x) /∈ S and S is an s(0)− t(T) cut.

We now consider its capacity. Note that no holdover arcs appear in δ+(S). For any (i, j), we
get a copy of (i, j) in δ+(S) for each time θ such that p(i)−p(s) ≤ θ, p(j)−p(s) > θ+τ(i, j).
Capacity of the cut is:∑

(i,j)∈A

u(i, j) ·max{0, p(j)− p(s)− τ(i, j)− (p(i)− p(s))}

This simplifies to: ∑
(i,j)∈A

u(i, j) ·max{0, p(j)− p(i)− τ(i, j)}

But recall that we took p(j)−p(i)−τ(i, j) to be the negative reduced cost −cp(i, j). Finally,
u(i, j) = f(i, j) for negative reduced cost edges. This gives exactly the value of the max
temporally repeated flow:

(T + 1)|f | −
∑

(i,j)∈A

τ(i, j)f(i, j)

Problems get hard fast:

• Quickest transshipment: poly-time computable (Hoppe, Tardos) but complicated

• Quickest min-cost flow is NP-hard

• Quickeest multicommodity flow is NP-hard

46

ORIE 6330

20 Lecture 20 (11/11)

Generalized flow. Idea: Want to model “lossy” flow or flow where transformations occur in
arcs. Each arc has a gain factor γ which modifies the amount of flow out based on multiplying
by flow in. Example: graph of currency conversion rates.

Input: Directed graph G = (V,A) with (j, i) ∈ A iff (i, j) ∈ A. Capacities u(i, j) ≥ 0 for all
(i, j) ∈ A, integers. Gains γ(i, j) for all (i, j) ∈ A, ratio of integers. We additionally assume
γ(j, i) = 1/γ(i, j). Also assume all integers bounded by B, and we have a sink t ∈ V (not
necessarily a source).

Take a generalized pseudoflow f : A→ R to be such that:

• f(i, j) ≤ u(i, j) for all (i, j) ∈ A

• f(i, j) = −γ(j, i)f(j, i)

We define the excess ef (i) ≡ −
∑

k:(i,k)∈A f(i, k), the net flow entering i.

A flow is a generalized pseudoflow such that ef (i) ≥ 0 for all i ∈ V . A flow is proper if
ef (i) = 0 for all i ∈ V, i 6= t.

Goal: Find a (proper) flow that maximizes ef (t) ≡ |f |.

Define the residual graph as before: Gf = (V,A) with uf (i, j) = u(i, j) − f(i, j) and Af =
{(i, j) : uf (i, j) > 0}. But we also introduce a new notion. A labeling function µ : V → R≥0

is s.t. t = 1; intuitively corresponds to a change in units of measurement at a node (µ(i) =
new units/old units).

Changing labels affects other quantities: e.g. conversion rates and capacities.

• Capacities: uµ(i, j) = u(i, j)µ(i).

• Gains: γµ(i, j) = γ(i, j)µ(j)/µ(i). (note that this preserves our skew-symmetry)

• Flows: fµ(i, j) = f(i, j)µ(i).

• Excesses: eµf (i) = ef (i)µ(i)

How does relabeling affect the value of the flow? Since µ(t) = 1, the excess at t is preserved
under relabeling |fµ| = f .

The gain of a path P is γ(P) =
∏

(i,j)∈P γ(i, j); same thing for cycle.

A cycle is flow generating if γ(C) > 1; in the case of currency conversion, this gives arbitrage
opportunity. If γ(C) < 1, then it is flow absorbing.

We say µ is the canonical labeling if µ(i) = maxi−t paths P γ(P) (if no such paths exist, set
µ(i) = 0). Can turn this into a shortest path problem by setting c(i, j) = − log γ(i, j);
summing costs is same as multiplying gain factors, and minimize instead of minimize. To
compute these labels, need to have no negative-cost cycles reaching t.

47

ORIE 6330

Given a flow-generating cycle C that can reach t, we can push δ flow around the path, end
up with γ(C)δ flow after one loop, and send the extra (γ(C) − 1)δ flow towards t. This
preserves flow conservation, and allows us to have a sink without a source. Such a path is
called a generalized augmenting path (GAP), i.e. a flow-generating cycle C in Af with a
path P in Af from a node in C to t.

Theorem 91. TFA for a proper flow f :

(1) f is a maximum generalized proper flow.

(2) There are no GAPs in Af .

(3) ∃ labeling µ s.t. γµ(i, j) ≤ 1 for all (i, j) ∈ Af .

Proof. We showed ¬(2) =⇒ ¬(1), since given a GAP, we can increase the flow into sink t.

We show (2) =⇒ (3) by computing canonical labels given assumption (2). Let S be nodes
that can reach t on arcs in Af . Compute the canonical labels µ(i) for all i ∈ S; since no
GAPs exist, no flow-generating cycles in S. Then shortest path algs work.

Note that for any i, j ∈ S, µ(i) ≥ γ(i, j)µ(j). So (i, j) ∈ Af =⇒ γ(i,j)µ(j)
µ(i)

≤ 1 ⇐⇒
δµ(i, j) ≤ 1.

Other cases:

• i /∈ S, j ∈ S (cannot happen for edge in Af).

• i /∈ S, j /∈ S so both labels 0; we can take the ratio to be 1 by convention.

• i ∈ S, j /∈ S has γ(i, j)µ(j)/µ(i) = 0 ≤ 1.

Last implication will be covered in additional video.

48

	Lecture 1 (9/2/20)
	Lecture 2 (9/7/20)
	Lecture 3 (9/9/20)
	Lecture 4 (9/14)
	Lecture 5 (9/16)
	Lecture 6 (9/21)
	Lecture 7 (9/23)
	Lecture 8 (9/28)
	Lecture 9 (9/30)
	Lecture 10 (10/5)
	Lecture 11 (10/7)
	Lecture 12 (10/12)
	Lecture 13 (10/19)
	Lecture 14 (10/21)
	Lecture 15 (10/26)
	Lecture 16 (10/28)
	Lecture 17 (11/2)
	Lecture 18 (11/4)
	Lecture 19 (11/9)
	Lecture 20 (11/11)

