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Abstract

I have always harbored a long-standing fascination with brainteasers. However, after one
is solved, it becomes trivial (modulo forgetting the solution). As such, over time, it becomes
necessary to find increasingly more difficult puzzles. This is my effort to consolidate those I have
encountered which I consider to be some of the more challenging, high-quality, mathematically
interesting, or otherwise noteworthy of the bunch.

1 Introduction

What makes a good puzzle? Solvability alone is not enough –“what is 2 × 3?” poses little chal-
lenge and thus little payoff. Difficulty alone is not enough – it may be hard to factorize large
semiprimes, but this is also not a particularly interesting task (cryptographers may disagree). In
fact, I find that a key theme from cryptography is a clean and concise way to express quality: A
good puzzle is a problem which has a solution which is difficult to find, but makes sense (maybe
with some hard thinking). The ratio of of difficulty to solve to cleverness of the actual answer is
perhaps my best proxy for puzzle quality. The sense of insight one feels from truly understanding
the solution to a puzzle is, in my opinion, the most significant indicator of puzzle quality. But
this also requires some level of cleverness – a solution that is completely unintuitive but logically
sound. For some puzzles, I find that discovering the solution does not provide same the level of
satisfaction as understanding how it works. I attempt to highlight some puzzles which I have felt
most satisfied this latter feeling. The puzzles are collected thematically, and in some rough sem-
blance of ascending difficulty within sections (though this is not a partial order, and my sense will
not necessarily match yours). I make no claim to be the author of any of these puzzles, many of
which are folklore. Unless explicitly stated otherwise, you may assume that any of the characters
in the following puzzles are perfect logicians.

2 Hat Puzzles

These are puzzles often phrased to involve a sadistic prison warden lining up some number of
prisoners and placing hats of various colors on their heads. The prisoners are instructed to each
guess the color of their own hat(s), with an offer of freedom contingent upon some rate of suc-
cessful guesses, and sometimes a punishment in the case of failure. However, they may not look
at their own hats and are not allowed to communicate with each other. If the prisoners have ad-
vance knowledge of the warden’s scheme, can they collectively plan ahead and devise a strategy
to improve their chance of success?

1

https://en.wikipedia.org/wiki/Semiprime


There are some non-mathematical loopholes to this problem. For example, one could posit the
strategy “everyone lines up, and speak your guess in less than 3 seconds if the next person’s hat
is blue, and more than 3 seconds if it’s red.” While these types of tactics may be effective in a real-
life scenario, allowing them detracts from the puzzle’s quality, so these will not be mentioned as
“correct” solutions. The only permitted transfer of information is that which is part of the puzzle.

In the interest of somewhat reframing the power dynamics, I will pose these problems as games
played between Papa Gnome and a set of his gnome children. This also has the benefit of appealing
to gnomes’ well-known penchant for both hats and mathematics.

1. Suppose n children play a game with Papa, where he places either a red or blue hat on each
child (he has an infinite supply of any color of hat). They can each see every one else’s hat,
but not their own. The children guess sequentially (so they can hear the previous guesses),
and win if every one of them is able to correctly guess their own hat color. What strategy can
the children implement to maximize their chance of winning, and what is the probability?

Solution: The children line up and guess in order of decreasing height. The tallest child
counts the number of red hats she can see and guesses “red” if it’s even and “blue” if it’s
odd. Each of the succeeding children can then deduce their own hat color, as they can see
the remaining hats. This succeeds with a 1/2 success rate.

2. This setup is the same as the previous puzzle, but now Papa has k different colors of hats.

Solution: Assign each of the colors a different value (mod k). The same solution strategy
as before, but the tallest child guesses that the sum of the hats is 0 (mod k), succeeding with
probability 1/k. This actually generalizes the previous solution.

3. Papa places either a red or blue hat on each of 2N childrens’ heads. They must all guess their
own colors simultaneously. The children win if at least N of them are correct.

Solution: The children pair off. In each pair, one child guesses that their hat is the same
color as their partner’s, and the other child guesses that their hats are different colors. One
of these is true, so each of the N pairs has a correct guess.

4. One from reddit. Papa Gnome gathers n children and writes a positive whole number on
their backs. Each child can see everyone else’s numbers, but not their own, and all the
numbers are different. Each child has a red hat and a blue hat in front of them. When Papa
rings his bell, everyone as to pick a hat and put them on. Then Papa will line them up
in ascending order of their numbers. If their hats alternate red-blue-red-blue-· · · or blue-
red-blue-red-· · · , then the children win. Otherwise Papa wins. What strategy should the
children use to maximize their chance of winning?

Solution: The children first line up in any order. The correct ascending order will be some
permutation of this order, and each child will know how every other child will be permuted
(just not their own position). If putting themselves in the first position would make this
permutation even, then they pick a red hat. Otherwise, they pick a blue hat.

If the true permutation is even, then everyone in an even position has a red hat and everyone
in an odd position has a blue hat. Otherwise, it will be the other way around.

5. Another from reddit. Papa has n colors of hat. Abby Gnome chooses a positive integer a
and a hats are stacked on her head. Billy Gnome chooses a positive integer b and b hats
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are stacked on his head. They can both see all of the other child’s hats, but none of their
own. They will each guess the color of each one of their hats (they cannot hear each other’s
guesses). The children win if at least one of the a + b guesses is correct. Do they have a
winning strategy?

Solution: Take a = n − 1 and b = nnn−1
. Note that b counts the number of functions from

an a-tuple of colors to colors. Billy will apply one by one each of the functions to the tuple
which corresponds to Abby’s hats and guess that color for each hat.

There are at most n − 1 possible a-tuples where Billy gets every guess wrong. To see this,
consider a set of n such a-tuples. There is a function f that maps all n tuples to n different
colors. Since that hat Billy is wearing at the index corresponding to f must be one of the n
colors, it is impossible for him to get all n guesses wrong.

Knowing this, Abby can guess that her kth hat matches the kth element of the kth tuple of
these n − 1 tuples. If Billy gets every guess wrong, then at least one of these must be correct.

Note that this proof is non-constructive and also not a tight bound. See if you can do better?

In all further hat puzzles, at least one set involved may be infinite. We lay some ground rules
for reasoning about the infinitary: You are allowed to freely use the axiom of choice (this is
also a hint! More specifically, Hint: Choice allows you to choose a representative from each
one of infinitely many sets ). If you do not know what this is, you may find this next stretch
of puzzles particularly challenging. You can assume that all actions happen instantaneously, so
that gnomes are capable of performing infinitely many actions. Additionally, they have infinite
memory (to help take advantage of any results of choice).

6. Papa plays the same game with countably infinitely many children, who each get either a red
or blue hat (again, assume he has enough hats of each color for every child). The children
then all guess their own hat colors simultaneously. The children win if all but finitely many
of them guess correctly.

Solution: Assume that the children agree on a well-ordering beforehand (e.g., via the well-
ordering principle). They also consider the equivalence relation ∼ on infinite binary se-
quences (with 0 representing red and 1 representing blue) where f ∼ g if and only if there
are only finitely many indices at which f and g differ. Using choice, they agree on a set of
representatives, one for each equivalence class. When the hats are revealed, each child can
identify which equivalence class their sequence belongs to, so they all guess that their hat
color is the color it would be according to the representative. Since the representative only
differs from the actual sequence in finitely many spots, only finitely many mistakes occur.

Make sure you understand this solution if you want to try further hat problems!

7. The same setup as the previous puzzle with a countably infinite number of children, but now
the children answer in sequence. They win if all but one of them guess correctly.

Solution: The solution is similar to the previous one, except that the first child guesses that
their hat color is the one which it would be if there are an even number of places where the
actual sequence doesn’t match the representative. Based on this information, all of the rest of
the children can determine their own hat colors. Note that this is essentially a combination
of solutions 1 and 6.
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8. Papa Gnome has a countably infinite number of boxes, each containing a slip of paper with a
real number written on it (they do not have to be distinct). He challenges Abby Gnome to the
following game: She can look at as many of the numbers as she wants (potentially infinitely
many) as long as she leaves at least one box untouched. She then has to guess the value of a
number in a box that she has not opened. Prove that Abby can do this with probability 1 − ε
for any ε > 0.

Solution: First Abby once again decides upon representatives for all sequences of real
numbers according to the equivalence relation ∼ described in the previous solution. Abby
chooses N > 1/ε and splits the boxes into N sequences, based on their indices (mod N).
She then randomly selects a number k from 0 to N − 1, and opens every box in every se-
quence except for the one corresponding to k (mod N). For the jth subsequence, there is a
maximal index mj at which the sequence differs from the representative of its equivalence
class; let m = maxj ̸=k mj. She opens every box in the k (mod N) subsequence from index
m + 2 onwards. This tells her which equivalence class the subsequence for k mod N lives
in, so she then guesses that the (m + 1)st box has the value it would in the representative
sequence.

The only way she can be wrong is if k corresponds to the unique subsequence which differs
from its representative for the longest time. This occurs with probability at most 1

N .

9. These next few, including solutions, are straight from reddit. The setup is as follows: Papa
chooses a (possibly infinite) group of children and a (possibly infinite) pallet of hat colors,
which are known to everybody. Colored hats get distributed among the children, with each
color potentially appearing any number of times. Each child can see everyone else’s hat but
not their own. Everyone must simultaneously make a guess about the color of their own hat.
Can you find a strategy that ensures:

(a) If just one child guesses their hat color correctly, then everyone will guess correctly.

(b) Only finitely many children guess incorrectly.

(c) Exactly one person guesses correctly, given that the cardinality of people is the same as
the cardinality of possible hat colors.

Solution: Again, the children agree upon representatives for each equivalence class under
∼. They also put a group structure on the set of hat colors using choice. For each person,
let r denote their color according to the representative and s the (group) sum of the finitely
many differences between what they see and the representative. Each child can figure out r
and s from the hats they can see.

(a) Guess r − s, i.e., that the total sum of differences between reality and the representative
is 0. Either this is the case and everybody guesses correctly, or everybody gets it wrong.

(b) Guess r, i.e. as if their color matches the representative. This is a generalization of
solution 6.

(c) Construct a bijection between the people and the hat colors. If person i is assigned color
c under this bijection, they should guess that the sum of differences is c + r − s. This is
true for exactly one person.
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10. Papa and three children play a game. He places either a red hat or blue hat on each child’s
head, uniformly at random. The children have to guess the color of their own hat simultane-
ously. However, they are also allowed to say “I don’t know.” The children win if at least one
guesses their own hat color correctly, and nobody gets it wrong. What strategy can they use
to maximize their chance of winning?

Solution: The children implement the following strategy, with a 3
4 of success: Say “I don’t

know” unless you see two of the same hat color, in which case you guess the opposite color.
This wins exactly when the hats are not all the same color.

This puzzle lends itself to generalizations which can be solved using hamming codes. I’m
not a big fan of these puzzles, so I won’t further extend here – but they are available with a
minimal amount of digging, e.g., here, here, and here.

11. This, and the following two, from reddit. Papa plays another game with Abby and Billy. He
places an infinite stack of red and blue hats on each of their heads. Abby and Billy must
simultaneously guess the sequences of their own hat colors. They win if at least one of them
gets infinitely many guesses correct.

Solution: They use the same strategy as in solution 3. At each index, Abby guesses that
their hats match, and Billy guesses that they do not. One of these is true at every index, so at
least one of the two has infinitely many correct guesses.

12. The same game as above, but with red, blue, and yellow hats.

Solution: The children group indices into pairs and fix a mapping from colors into Z3. We
illustrate a strategy to guarantee that among the four guesses for each pair, at least one is
correct. Suppose WLOG that the indices are 1,2. Let Abby’s colors be denoted ai and Billy’s
colors be denoted bj.

Abby’s first guess is b1 + b2 and her second guess is b1 − b2. Billy’s first guess is a1 − a2 and
his second guess is a2 − a1. The four errors are:

e1 = a1 − (b1 + b2)

e2 = a2 − (b1 − b2)

e3 = b1 − (a1 − a2)

e4 = b2 − (a2 − a1)

If e2 = 0, we are done. Otherwise, e3 = e1 + e2 and e4 = e3 + e2, so {e1, e3, e4} span Z3 so at
least one of them is 0.

This solution can also be viewed a particular instance of problem 5.

13. The same game as above, but instead of colors, each child has an infinite stack of real num-
bers on their head. You may assume the Continuum Hypothesis.

Solution: The set of all sequences over R has cardinality continuum. Assuming CH allows
us to put a well-ordering over this set such that every initial segment is countable.

Suppose that Abby’s sequence is X and Billy’s sequence is Y. Abby assumes that X ≤ Y
in the well-ordering. That means that there are only countably many possibilities for X, so
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she can use a dovetailing argument to guarantee infinitely many correct guesses for each of
these sequences. Likewise, Billy assumes that Y ≤ X and proceeds accordingly.

A more explicit description of dovetailing: For each k ∈ N, Abby does the following: For
each j ≤ k, guess that the next k terms are what they would be in the jth sequence. The
iteration for each k takes only k2 steps, and if the true index is i, then for every k ≥ i, Abby
will get k correct guesses in the kth iteration.

For further mathematical reading concerning hat problems, see here, here, and here.

3 Probability Puzzles

This section contains riddles related to elementary probability. The machinery required is hope-
fully not too complicated (since I don’t know much probability).

14. Pick two real numbers x, y uniformly at random from [0, 1]. For what value of z is the prob-
ability that |x − y| < z equal to the probability that |x − y| > z?

Solution: We can draw this region in the unit square as a band of width z
√

2 across the
diagonal. The remaining region is two triangles which sum to a square of size (1 − z)2, so
we can solve to get z = 1 − 1√

2
.

15. Alice picks a number α ∼ U([0, 1]). Bob repeatedly samples βi ∼ U([0, 1]) until he gets a
number greater than α. What is the expected number of samples for Bob?

Solution: Infinitely many. If Alice’s number is α, the conditional expectation for Bob’s
number of samples is α−1

α . Integrating this over [0, 1] is infinite.

16. Given a biased coin with probability p of heads, how can you simulate a fair coin using only
a finite number of flips in expectation?

Solution: Flip the coin twice. If the results are TH, count it as tails and if the results are
HT, count it as heads. These each occur with probability p(1 − p). Otherwise you repeat
the trial, which happens with probability 1− 2p(1− p). The distribution over the number of
trials required is geometric, so the expected number of flips is 2

p(1−p) .

17. Given a fair coin, how can you simulate a biased coin with probability p of heads using only
a finite number of flips in expectation?

Solution: Write the binary expansion of p (e.g., p = 1
3 would correspond to 0.010101 . . .2).

Flip the fair coin and record heads as 1 and tails as 0, and keep doing this to construct a
new binary number q (with an initial binary point). So if the first three flips were HTH, you
would write this q = 0.101. As soon as the two numbers differ, compare the numbers: if p
is larger, then say “heads,” and if q is larger, say “tails.” Intuitively, this process generates a
uniformly random number between 0 and 1, which will be smaller than p with probability
exactly p. Additionally, since each flip has a 1/2 chance of matching p, the number of flips is
geometric again, this time with expectation 2.

There’s actually one more thing we need to take care of – some numbers have multiple binary
representations. For example, 1

2 = 0.12 = 0.0111 . . .2. In this case, pick one representative
and stick with it, proceeding as above.
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With a little more work, you can show that this achieves the best general lower bound on the
expected number of flips.

18. You have a large pot of spaghetti, with N strands. They are all tangled up, but the ends of
each strand are both sticking out of the pot. However, you can’t tell which ends are which.
You grab two ends at random and tie them together, repeating this until no ends are free. If
you untangle the spaghetti, there will be some finite number of loops formed. What is the
expected number of loops?

Solution: Solvable via induction. Consider what can happen after you grab the first end:
Either the second end is the other end of the same noodle, or it isn’t. In the first case, con-
tinuing the game is like playing the game for N − 1 with an extra loop. In the second case,
the two noodles tied together act as one noodle, so you’re playing the game for N − 1. This
means we can write, where XN is the random variable denoting the number of loops for the
N-spaghetti game:

E [XN ] =
1

2N − 1
(E [XN−1] + 1) +

2N − 2
2N − 1

E [XN−1]

=
1

2N − 1
+ E [XN−1]

With the base case X1 = 1, this gives the series:

E [XN ] = 1 +
1
3
+ · · ·+ 1

2N − 1
= H2N − 1

2
HN

where Hi is the ith harmonic number.

4 Graph Theory Puzzles

This section contains riddles related to finite graph theory. Depending on your background, these
may not be too difficult. Some graph conventions: G = (V, E) for both directed and undirected
graphs, and we typically use n to denote the number of vertices and m the number of edges. The
neighbors N(v) of a vertex v are v and all adjacent vertices.

19. Let G be a graph on 3n vertices. For each vertex v, count the number of vertices which are
not adjacent to v, |V \ N(v)|. If the sum of these counts over all vertices is less than 3k for
some integer k, prove that there is a vertex with degree at least 3n − 3k−n.

Solution: The given condition is equivalent to the statement that the sum of the degrees in
G is bounded:

∑
v∈V

deg(v) ≥ 3n(3n − 1)− 3k

Since n ≥ 1 and k ≥ 1, 3n(3n − 1) − 3k is odd. Since we know that the total degree of
all vertices in any graph is even, the sum of degrees over all vertices in G must be at least
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3n(3n − 1)− 3k + 1. By the pigeonhole principle, there is at least one vertex with degree at
least ⌈

3n(3n − 1)− 3k + 1
3n

⌉
=

⌈
3n − 1 − 3k−n +

1
3n

⌉
= 3n − 1 − 3k−n + 1 = 3n − 3k−n

20. Suppose that G is a graph with chromatic number 6. Prove that there are two vertex-disjoint
odd cycles in G.

Solution: There is a fairly clunky induction proof of this claim, as well as one which in-
volves carefully removing cycles from the graph. However, there is a cleaner solution. Con-
sider a minimal coloring of G. Take the first three colors and consider the subgraph induced
by the vertices of these colors. It must contain an odd cycle, else we could 2-color this sub-
graph and improve the original coloring. The same is true for the subgraph induced by the
other 3 colors. These cycles are vertex-disjoint because the sets of colors do not overlap.

21. Let G be a directed tournament graph (a directed graph with exactly one edge between every
pair of distinct vertices). We say a vertex u dominates another v if either: (1) (u, v) ∈ E, or (2)
there exists a vertex w such that (u, w), (w, v) ∈ E. Prove that there is a vertex that dominates
every other vertex.

Solution: Consider the vertex u which dominates the most other vertices and suppose that
this number is less than n − 1. Let v be a vertex that is not dominated by u. We claim that
v dominates every vertex that u does, in addition to u – this is a contradiction. Clearly v
dominates u because (u, v) /∈ E, so (v, u) must be.
Let w be dominated by u; there are two cases. If (u, w) ∈ E, then this combined with the
fact that (v, u) ∈ E implies that v dominates w. Otherwise, there is an x ∈ V such that
(u, x), (x, w) ∈ E. But we claim that (v, x) ∈ E. If not, we must have (x, v) ∈ E, so u would
dominate v.
This problem can also be solved with graph induction – but the strong induction case is
much easier and actually quite nice here. The inductive step:
Pick an arbitrary vertex v. Split V into Va ∪ Vb ∪ {v}, where Va = {u | (u, v) ∈ E} and
Vb = {u | (v, u) ∈ E}. The induced subgraph on Va is also a directed tournament graph, so
the induction hypothesis applies (if it is empty, then v already dominates everybody). Let
u be the vertex which dominates everybody in this subgraph. By assumption, it dominates
everything in Va. There is also an edge (u, v) by construction; this means that it dominates v
and everything in Vb.

22. Recall that χ(G) is the minimum number of colors needed to color an undirected graph G.
G is called color-critical if χ(G − v) < χ(G), for all v ∈ V. If G = (V, E) is color-critical then
show that deg(v) ≥ χ(G)− 1, for all v ∈ V.

Solution: Assume for contradiction that G is color-critical with χ(G) = k but there is a
vertex u ∈ V such that deg(u) ≤ k− 2. Let G′ = G− u. Since G is color-critical χ(G′) ≤ k− 1.
Consider a (k − 1)-coloring of G′. Since deg(u) ≤ k − 2, there is least one of the k − 1 colors
that is not used by the neighbors of u in the (k − 1)-coloring of G′. Thus we can extend the
(k − 1)-coloring of G′ to a (k − 1)-coloring of G by coloring vertex u with one of the unused
colors, a contradiction.
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23. Let k ∈ Z+. Show that, for any graph G, it is always possible to k-color the vertices such that
at least k−1

k |E| edges have different-colored endpoints. (Equivalently, any graph contains a
k-partite subgraph with at least k−1

k |E| edges).

Solution: We use the probabilistic method. Let 1e be an indicator for whether the edge e
has differently-colored endpoints. Then the random variable X = ∑e∈E 1e indicates the total
number of such edges. Suppose all vertices are colored randomly. We have:

E [X] = ∑
e∈E

E [1e]

= ∑
e∈E

Pr[1e = 1]

= ∑
e∈E

k − 1
k

=
k − 1

k
|E|

There must exist an outcome satisfying X ≥ E [X], so there is a k-coloring with at least this
many edges satisfying the desired condition.

24. Let k ≥ 3. Suppose that G satisfies the following property: Every set of k vertices in G shares
exactly one common neighbor (vertices are not considered their own neighbors). Find an
upper bound on the max degree in G.

Solution: We claim that k is an upper bound. If |V| = k + 1, then Kk+1 is the unique graph
satisfying this condition. Otherwise, assume that |V| ≥ k + 2.

Suppose that there is a vertex v such that deg(v) = k + ℓ, with ℓ ≥ 1. Consider all possible
k-subsets of N(v) containing v; there are (k+ℓ

k−1) such sets. Each of these must share a common
neighbor, and since v is in the set, it must be an element of N(v) \ {v}. There are k + ℓ such
elements. We claim that (k+ℓ

k−1) > k + ℓ Note that:(
k + ℓ

k − 1

)
=

(k + ℓ)!
(k − 1)!(ℓ+ 1)!

So the claim is equivalent to showing that (k + ℓ− 1)! > (k − 1)!(ℓ+ 1)!. This can be shown
algebraically, but there’s actually a nice combinatorial proof of this fact. Suppose we have
k − 1 dogs and ℓ cats. The LHS counts the number of all arrangements of pets. The RHS
counts the number of such arrangements where the dogs form a contiguous block. Since
k ≥ 3, there is an arrangement counted by the LHS but not the RHS (you can place a dog at
either end of the row). Thus, the inequality is strict.

Because of this, we can apply the pigeonhole principle: There are distinct k-subsets X, Y ⊆
N(v) both containing v such that some vertex u is a common neighbor of both. But (X ∪Y) \
{v} contains at least k elements, and every element of this set has both u and v as neighbors.
This is a contradiction.

If you remove the constraint that k ≥ 3, try to classify all graphs satisfying this condition!
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25. Let k ∈ Z+ and let G be a graph where, for every vertex v, deg(v) = 1
k ∑

u∈N(v)
deg(u). Prove

that the maximum possible degree of any vertex in such a graph is k2 − k + 1 and show that
this bound is tight.

Hint: You can try showing that in the case of k = 2, the graph must consist of a disjoint
union of cycles and K1,3 trees.

Solution: Suppose otherwise, i.e., that there is such a graph with a vertex v such that
deg(v) > k2 − k + 1. Note that we can write the given condition as

(k − 1)deg(v) = ∑
u∈N(v)\{v}

deg(u)

Since the RHS is a sum over deg(v) terms, this means that there must be some u ∈ N(v)
with deg(u) ≤ k − 1. But we have:

deg(u) =
1
k ∑

w∈N(u)
deg(w)

=
1
k

deg(v) + ∑
w∈N(u)\{v}

deg(w)

≥ k2 − k + 1
k

> k − 1,

which is a contradiction.

A graph achieving this bound is as follows: Consider a tree containing a central node v
with degree k2 − k + 1. Each of v’s neighbors is a vertex of degree k − 1, whose remaining
neighbors are all leaves.

5 Number Theory Puzzes

While I say “Number Theory,” there’s no real advanced machinery here. These are really puzzles
about the integers, and mostly about divisibility (though the solutions largely draw from other
techniques).

26. Prove that in any set of n integers, there is either a number divisible by n, or there are two
numbers whose difference is divisible by n.

Solution: This is a pigeonhole problem with the remainders (mod n). If one of the num-
bers is 0 (mod n), we are done. Otherwise, there are only n − 1 possible remainders for n
number, so two of them have the same remainder and their difference is divisible by n.

27. Prove that in any set of n + 2 integers, there are two numbers such that either their sum or
difference is divisible by 2n. (I think this is an old Putnam question but haven’t been able to
track it down)
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Solution: This is a pigeonhole problem with the remainders (mod 2)n. The holes will be
sets of remainders {r, 2n− r}, so there are n+ 1 holes. If two numbers fall into the same hole,
they are either equal (mod 2)n and their difference is divisible by 2n, or they are different
and their sum is divisible by 2n.

28. Let p be a three-digit prime. Prove that there exists repdigit (a number which consists only
one digit repeated) which is divisible by p.

Solution: In fact, we only need p to be larger than 5. Consider the set {1, 11, . . . , 111 . . . 1},
with the last element consisting of p + 1 1’s. There are p + 1 elements of this set, so two
of them have to have the same value (mod p). Their difference is a number of the form
111 . . . 100 . . . 0, so it can be written 111 . . . 1 × 10k for some k ∈ Z+. But p doesn’t share any
common factors with any power of 10, so it must divide the number 111 . . . 1.

29. Prove, for any natural number n, that it is possible to select 2n numbers from any arbitrary
collection of 2n+1 integers (not necessarily distinct) such that that sum of the 2n numbers is
divisible by 2n.

Solution: By induction on n. Base case is trivial.

Any collection S of 2k+2 integers contains a collection of 2k+1 numbers whose sum
is divisible by 2k+1.

Arbitrarily partition S into two collections S1 and S2, each containing 2k+1 non-negative
integers. By the Induction Hypothesis, there are collections S′

1 ⊂ S1 and S′
2 ⊂ S2 satisfying:

∑
x∈S′

1

x = p1 · 2k, p1 ∈ Z |S′
1| = 2k

∑
y∈S′

2

y = p2 · 2k, p2 ∈ Z |S′
2| = 2k

In short, we have two disjoint collections of 2k numbers each, both of which have sums which
are a multiple of 2k.

Let S3 denote the collection S \ (S′
1 ∪ S′

2), i.e. all remaining elements. S3 contains 2k+1 num-
bers and using the Induction Hypothesis again, we have a collection S′

3 ⊂ S3 such that:

∑
z∈S′

3

z = p3 · 2k, p3 ∈ Z |S′
3| = 2k

By the Pigeonhole Principle, among the three integers p1, p2, p3, at least two of them pi, pj
must have the same parity. Then their sum is even and hence pi + pj = 2ℓ, for some integer
ℓ. Then, S′

i ∪ S′
j contains 2k+1 non-negative integers whose sum is given by:

∑
w∈S′

i∪S′
j

w = ∑
w∈S′

i

w + ∑
w∈S′

j

w = 2k(pi + pj) = 2k(2ℓ) = 2k+1ℓ

Where we can split the sum because S′
i and S′

j are disjoint.
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6 Math Puzzles

This section consists of a collection of general mathematical riddles. The math required varies
from pre-high school to graduate-level, though actual solutions may be trickier than this suggests.

30. From the wu forums. The sum of N real numbers is 20. If the sum of the smallest three is 5,
and the sum of the largest three is 7, what are the possible values of N?

Solution: The conditions imply that there are N − 6 numbers which sum to 8 (there can
be no overlap between the smallest and largest 3, because the sum would be too small).
Additionally, each of these numbers falls in the range [5/3, 7/3]. Three such numbers can
only sum to a max of 3× (7/3) = 7 and five such numbers would sum to at least 5× (5/3) =
25/3, so there must be exactly 4 numbers, for a total of 10.

31. Alice and Bob play the following game. There are 2N coins of various denominations in a
row on a table. On each player’s turn, starting with Alice, they must take either the leftmost
or rightmost remaining coin. Prove that Alice has a strategy that guarantees she wins at least
as much total money as Bob.

Solution: Color all the odd-indexed coins red and all the even-indexed coins blue. If the
total value of the red coins is larger, then Alice picks a red coin on every turn; otherwise, she
picks a blue coin. This is always possible because whenever she picks a coin of one color, the
resulting arrangement always has coins of the other color on both ends.

32. Prove that every real number can be written as a finite sum of real numbers, each of which
contains only the digits 0 and 3.

Solution: We first show that it is possible to write any x ∈ R as a finite sum of real num-
bers, each of which contains only the digits 0 and 1. This is straightforward: Pick a decimal
representation of x, then, for 1 ≤ i ≤ 9, construct real number xi where the jth digit of xi is 1
if the jth digit of x is at least i. Then x = ∑9

i=1 xi.

To get the desired representation for y ∈ R, just take x = y/3 and repeat the above proce-
dure, and multiply each of the components by 3.

33. Is it possible to pick 7 points in R2 such that among any set of three, there are two points
exactly distance 1 away from each other?

Solution: Yes – the Moser spindle works.

34. It is well-known that the derivative of x2 is 2x. But if we rewrite the product x · x as a sum,
the following happens:

d
dx

(x2) =
d

dx
(x + x + · · ·+ x, x times)

=
d

dx
(x) +

d
dx

(x) + · · ·+ d
dx

(x), x times

= 1 + 1 + · · ·+ 1, x times
= x

What went wrong?
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Solution: The length of the summation is also a function of x. As such, taking the derivative
requires using the chain rule. Writing it out somewhat explicitly, we have:

(x + ∆)2 = (x + ∆) + (x + ∆) + · · ·+ (x + ∆), x+∆ times
= (x + ∆) + (x + ∆) + · · ·+ (x + ∆), x times +∆(x + ∆)

= x · x + x · ∆+∆(x + ∆)

= x2 + 2x · ∆ + ∆2

From here, you can proceed using the standard limit definition of the derivative.

35. Alice and Bob play the following game: Alice chooses a polynomial f with positive integer
coefficients. Bob can adaptively query the value of f on some points x ∈ Z. After k guesses,
he must guess the identity of f and wins if he is correct; otherwise, Alice wins. What is the
minimum k for which Bob has a winning strategy?

Solution: k = 2 suffices (and k = 1 does not). Bob queries the value of f on 1. This gives
the sum of the coefficients of f , which is also an upper bound on the size of any coefficient.
Bob picks x > log10( f (1))o and queries the value of f on 10x. The coefficients will be written
out explicitly:

an(10x)n + an−1(10x)n−1 + · · ·+ a1(10x) + a0,

so the first x digits are the deg( f ) coefficient, the next x digits are the deg( f )− 1 coefficient,
and so on. Each block of digits is disjoint from the others because each of the ai is less than
10x. To see that k = 1 is not enough, suppose that Alice chooses f (x) = x. Then for any of
Bob’s queries a, there is always at least one other positive integer polynomial through the
point (a, a): f (x) = a if a ≥ 0, f (x) = 2x − a if a ≤ 0.

36. The same game as above, but now Bob is allowed to query the value of f on x ∈ R.

Solution: k = 1 is now enough. Bob queries the value of a transcendental number greater
than 1, say π. f is the unique integer polynomial p such that p(π) = f (π). Suppose oth-
erwise; then (p − f )(π) is an integer polynomial which has π as a root, implying that π is
algebraic. Actually finding the value of f can then be done by taking ⌈logπ( f (π))⌉ as an
upper bound for the degree of f , and brute forcing over possible coefficients.

37. Suppose you have a sequence of ab + 1 distinct integers. Prove that there exists a strictly
increasing sequence of length a + 1 or a strictly decreasing sequence of length b + 1.

Solution: This is the Erdős-Szekeres theorem and one of my favorite applications of the
pigeonhole principle. Suppose otherwise. For each index i of the sequence, associate an
ordered pair (xi, yi) where xi is the length of the longest increasing subsequence starting from
i and yi is the length of the longest decreasing subsequence starting from. By assumption, we
must have 1 ≤ xi ≤ a and 1 ≤ yi ≤ b (since a sequence of length 1 is always possible). The
pigeonhole principle then says that there’s indices i < j such that (xi, yi) = (xj, yj). But this
is impossible: If the ith term is smaller than the jth, then we can append it to j’s increasing
sequence to get a longer increasing sequence starting from i. Otherwise, the ith term is larger,
so we can instead construct a longer decreasing sequence.
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38. Suppose you are given a k-coloring of the d-dimensional integer lattice Zd. Prove that there
exists a d-hyperrectangle such that all of its vertices are the same color. (This is a generaliza-
tion of an old USAMTS problem)

Solution: We illustrate the solution for d = 2. This is easily generalized using induction.
Consider the grid [0..(k + 1)k]× [0..k]. There are (k + 1)k + 1 columns of height k + 1, and
only (k + 1)k ways to color such a column, so at least 2 of them have the same coloring. But
in each of these columns, there’s k + 1 spots with k colors, so two indices in each column
have the same color: these four form the desired vertices.

Now if the (d − 1)-dimensional solution is over a space of size m, solving the d-dimensional
solution simply requires repeat the process with mk + 1 layers of the (d− 1) dimensional grid
– pigeonhole guarantees that two of these layers are identical, so they contain two (d − 1)-
dimensional hyperrectangles directly above one another.

This solutions is far from optimal – see if you can improve the bounds.

39. From the Williams Conundrum. As Thanksgiving is rapidly approaching, many turkeys are
understandably worried. Several of them have gotten together and convinced humanity to
accept the following challenge (rather than settling things with the sword).

The turkeys will create a polynomial P(x) such that, no matter what integer k the humans
give them, the output P(k) will be an integer. If they can do this with one of the coefficients
of P(x) being 1/2013, then no turkeys will be eaten for the rest of 2013.

Can the turkeys succeed? More generally, if you give them finitely many years (say n + 1
years) can they create a similar polynomial which has each of 1/2013, 1/2014, . . . , 1/(2013+
n) as coefficients?

Solution: It turns out that the subring of integer-valued polynomials is generated by the
polynomials fk(t) = t(t − 1) · · · (t − k + 1)/k!. So if we let 2013 = k, we have that fk(t) is an
integer-valued polynomial where the t2013 term has coefficient 1

2013! . Multiplying this poly-
nomial by 2012! yields the desired polynomial. This polynomial also has a more straightfor-
ward interpretation: For any integer x, it is 1

2013 of the product of x and the 2012 preceding
integers. Since one of these is divisible by 2013, dividing the result by 2013 results in an
integer.

For the more general problem, we can construct the following polynomials:

P2013(x) =
1

2013
x(x − 1) · · · (x − 2012)

P2014(x) =
1

2014
x(x − 1) · · · (x − 2013)

...

P2013+n(x) =
1

2013 + n
x(x − 1) · · · (x − 2012 − n)

Note that multiplying an integer-valued polynomial by xn for n ≥ 0 always results in an-
other integer-valued polynomial (more generally, x is integer-valued and the set of integer-
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valued polynomials is closed under products). So we can take:

2013+n

∑
i=2013

Pi(x)xki

where k2013 = 0 and ki+1 = ki + i. This appropriately shifts the coefficients to fit into disjoint
blocks, so that there is no overlap between different polynomials. Since Pi has a term with
coefficient 1

i for all i, this is our desired polynomial.

40. The coast guard is trying to track down a rogue pirate ship somewhere in R2. The only thing
they know is the last time the ship was seen, and at that time, it was at an unknown lattice
point (a element of Z2) and has set a course to travel along a straight line with that passes
through at least one other lattice point at an integer speed (in units/day). The coast guard
has one plane they can send to check a single location (anywhere they want) every day, with
a vision radius of 1. Can they devise a strategy to guarantee that they find the ship in a finite
amount of time?

Solution: The location of the ship can be written as a vector function ℓ⃗(t) = x⃗ + r⃗t, where
ℓ is the current location, x⃗ is the initial location, and r⃗ is the vector along which the ship
is traveling. Note that there are only countably many possibilities for x⃗ and r⃗ (the lattice
point conditions imply that the line has rational slope or is vertical). This means that the
coast guard can well-order the set of all such pairs {(x⃗i, r⃗i)}i∈N, and at time t, check location
x⃗t + r⃗t(t).

41. Another from reddit. Alice and Bob play a game on the reals. Alice starts by selecting
an uncountable subset S0 ⊆ R. Then they alternate selecting S1, S2, . . . , each of which is
uncountable, such that Si ⊇ Si+1. They play for a countably infinite number of steps. Alice
wins if

⋂
i∈N Si is empty; otherwise Bob wins. Who has a winning strategy?

Solution: Alice wins, assuming Choice. First she fixes a well-ordering of the reals. At
each step, the remaining real numbers are ordered according to a restriction of this well-
ordering, with order type equal to some ordinal number. Alice removes all real numbers
which correspond to a limit ordinal or 0 in this mapping.

The intersection is empty. Consider any x ∈ R. The ordinal corresponding to x must de-
crease in each of Alice’s steps, and cannot increase in Bob’s. Therefore, it must eventually
be removed, otherwise the sequence of ordinals for x would form an infinite decreasing se-
quence.

7 Other Puzzles

Though mathematical knowledge may be helpful, it is less explicitly required for this more general
selection. These rely primarily on logical thinking.

42. A wealthy man dies and leaves, among his other assets, his 17 horses to his children. They are
to be divided in the following ratio: The eldest child receives 1/2, the middle child receives
1/3, and the youngest receives 1/9. How are the children to fairly divide the horses if none
of them feel comfortable with the idea of keeping a fractional horse?
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Solution: The children borrow a horse from their neighbor. Then the eldest receives 9,
the middle receives 6, and the youngest receives 2 – with the one left over returned to the
neighbor.

43. You are placed in a dark room with two identical tables. One table contains 100 coins of
various denominations and the other is empty. You are told that exactly 10 of the coins are
heads-up, but it is too dark to see them. Your task is to move some of the coins from the full
table to the empty one so that at the end, all coins are on one of the two tables and both tables
have the same number of coins with heads up. You are forced to wear gloves, so you cannot
feel the surfaces of the coins at all. What is your best strategy?

Hint: You can solve this even if only 1 coin is heads up.

Solution: Pick up 10 coins from the table, flip them over, and then move them to the other
table. If x of the coins you picked up were originally showing heads, then the first table has
10 − x heads, and so does the second table.

44. Suppose you have 25 horses. A faster horse will always beat a slower horse, but horses don’t
always run at the same speed. If you can race 5 horses at a time, how many races are needed
to determine the fastest 3 horses?

Solution: 7 races. First, group the horses into 5 sets of 5 and race them all. Take the winners
from these races, A, B, C, D, E, and race them. Assume WLOG that this the order from fastest
to slowest. Now race the following horses: the second and third place from A’s first race, B,
the second place from B’s first race, and C.

From the first 6 races, we know A is the fastest. Every other horse not in the 7th race is
already known to be slower than 3 other horses, so the fastest 2 in this race comprise the
second and third fastest horses.

Proving that 6 is insufficient reduces to some case work, and the observation that you need
to see every horse race at least once.

45. There are two doors, with a prize behind one and nothing behind the other. Each door is
guarded a knight or a knave (knights always tell the truth and knaves always lie) – but
it’s possible that they’re both knights or both knaves. Can you ask one yes-no question to
determine which door hides the treasure?

Hint: The answer to the standard puzzle (where you know there’s a knight and a knave)
pretty much works.

Solution: Many solutions are possible. One question is as follows: “If I were to ask some-
body who is the opposite type, which door would they say has the prize?” Whatever they
answer, the prize is behind the other door.

One of the more well-known extensions to this problem has been dubbed “The Hardest Logic
Puzzle Ever.” I did not list it here, though it is a solid puzzle, because I feel that the amount
of casework required makes it somewhat more tedious than ingenious (much like the 12-coin
scale puzzle). It does have its own extensions which may be of further interest.

46. Consider an arbitrary triangle T. Show that for any set of 7 points in the interior of T, it is
always possible to pick three points such that the area of the triangle formed by these points
is at most 1

4 the area of T.
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Solution: Let the triangle be ABC and let M, N, O be the midpoints of sides AB, BC, respec-
tively. Draw lines MN and NO. This divides the triangle into three regions: two smaller
triangles similar to the original triangle and one parallelogram. By the pigeonhole principle,
for any 7 points, one of these regions must contain at least three. Any three such points form
a triangle with area at most 1

4 that of T (the case with 3 points in the parallelogram is slightly
trickier, but not too difficult).

47. From Steven Miller’s puzzles. I am an honest person, and am thinking of one of three num-
bers: 1, 2 or 3. You may ask me EXACTLY one yes-no question, I will answer truthfully.
What question should you ask?

Hint: If I cannot answer your question, I will say I cannot answer it.

Solution: The question is as follows: “I’m thinking of a random variable X that takes value
either 1.5 or 2.5. Is X larger than your number?” A “yes” means that my number is 1, a “no”
means that my number is 3, and an “I don’t know” means that my number is 2.

48. Alice and Bob play a game on a large circular table. Starting with Alice, they take turns
placing identical coins on the table. The coins must be placed flat, cannot move previously
placed coins, cannot overlap other coins, and must lie entirely on the table. The winner is
the last player who is able to place a coin. Who has a winning strategy?

Solution: Alice does. On her first move, she places a coin at the center of the table. After
this, she mirrors every move Bob makes directly across the center.

49. On a certain island live 100 villagers, 50 with brown eyes and 50 with blue eyes. The village
has a peculiar rule: anyone who knows that they have blue eyes must leave the island at
sunset. Luckily, there are no mirrors in the village, and nobody knows for certain the color
of their own eyes. There’s also no restrictions on sight – nobody is blind, and everybody
can see everyone else’s eyes. One day, a shipwrecked sailor stumbles upon the village and is
nursed back to health. Before he departs, the village holds a festival in his honor, where he
announces to the crowd that “at least one villager has blue eyes.” Now, this is information
that all the villagers already know – they can see that there are blue-eyed villagers among
them. What effect, if any, does this announcement have?

Hint: Try reasoning about the cases where very few villagers have blue eyes.

Solution: This is a well-known and, more interestingly, well-studied puzzle. Solutions are
available at various locations[1][2][3][4][5][6], though they are largely the same. The sailor
does introduce new knowledge to the village in a subtle way – he makes the fact that there
is at least one blue-eyed villager common knowledge (while this is necessary for this particular
solution to work, I’ve actually left out a few conditions that are required for this to be true –
for one, we need all of the villagers to have heard the announcement simultaneously). For a
deeper dive (and other similar puzzles), I recommend Reasoning about Knowledge.

50. There is a magic trick performed by two magicians, Alice and Bob, with one regular, shuffled
deck of 52 cards (assume that the cards are rotationally symmetric). Alice asks Carol to
randomly select 5 cards out of a deck and hand the 5 cards back to Alice. After looking at
the 5 cards, Alice picks one of the 5 cards and gives it back to Carol. Alice then arranges the
other four cards in some way, and gives those 4 cards face down, in a neat pile, to Bob. Bob
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looks at these 4 cards and then announces the card that Carol is holding. How does this trick
work?

Solution: Alice and Bob agree on an ordering over all cards beforehand. Of the 5 cards
Alice receives, at least 2 have to be the same suit; WLOG, say this is Spades. Assign the cards
values (mod 13) based on their face value (say, 11 for Jack, 12 for Queen, and 0 for King).
Between the two Spades, one of the positive differences (mod 13) must be at most 6. Alice
returns the “smaller” such card to Carol, then places the other one at the bottom of the pile.
The remaining 3 cards can be placed in one of 3! = 6 permutations, based on the ordering
over cards, to indicate to Bob the value of the difference.

Now that you know this trick, what is the size of the largest deck of cards that a trick of this
type can be performed with?

51. Papa Gnome plays a game with N children. He has a secret room with no windows contain-
ing a single box with two switches which can each be in either “up” or “down” positions –
the initial state of the switches is unknown. Every day, he brings one child into the room,
where they must flip exactly one of the switches and then leave – they can’t use the room
to send any sort of other information, and they aren’t allowed to discuss anything once the
game starts. He doesn’t have to bring the children in any particular order, although there
is the guarantee that at any point in time, for each child, there will be some future time at
which that child will be brought to the room. At any point in time, any child can declare that
everyone has been into the room at least once. If they are correct, the children win; otherwise,
they lose. Do they have a winning strategy?

Hint: First try to solve the version of this problem where the children know that the switches
both start “down.”

Solution: The children pick Abby to be the “counter.” They then perform the following
procedure: Abby, when she enters the room and sees the left switch “up,” will flip it down
and add 1 to her count (her count starts at 0). Otherwise, she will flip the right switch. Any
other child who enters the room does the following: If the left switch is “down” and they
have not yet flipped it up twice, flip it up. Otherwise, flip the right switch. Once Abby’s
count reaches 2N − 2, she declares that all children have visited.

If the children knew that the left switch started “down,” then they could use this strategy
but only flipping the left switch up once apiece. Since each person only flips the left switch
up once and Abby is the only one to flip it down, she will know when everyone has done so
and the count is N − 1. But if the initial state can be “up,” the first time she flips it down, she
doesn’t know whether it was up by default or as the result of another child flipping it down.
This means that she doesn’t know if her count should end up reaching N − 1 or N − 2. If they
go through two rounds, then by the time her count reaches 2N − 2, she knows that everyone
has been to the room at least once – this uncertainty is resolved.

18


	Introduction
	Hat Puzzles
	Probability Puzzles
	Graph Theory Puzzles
	Number Theory Puzzes
	Math Puzzles
	Other Puzzles

