
CS 6840 Final Project May 22, 2020
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1 Introduction

In deterministic sequential games, there is an implicit trade-off between payoff and computa-
tional efficiency. A player with complete information and unlimited computational resources
could fully calculate the game tree and use Zermelo’s backward induction algorithm to choose
the strategy that maximizes their payoff. On the other hand, a player who chooses to my-
opically best-respond on each of their turns performs very little computation, at the expense
for no guarantee in their eventual payoff. In their recent paper [1], Mirrokni, Thain, and
Vetta introduce k-lookahead search, a strategy selection mechanism that captures the essence
of this trade-off. In k-lookahead search, a player computes the next k levels of the game
tree from the current node, estimates the value at the leaf nodes, and performs backward
induction in order to select an optimal strategy. In this way, k-lookahead search naturally
captures both myopic best-response (k = 1) and Zermelo’s algorithm (k =∞), as well as a
spectrum of intermediary approaches.

One assumption that is made in the analysis of Mirrokni et al. is that each player is risk-
neutral; that is, players assume that each player acts to maximize their (expected) payout
each turn. This assumption is realized during the exploration of the search tree, wherein
all branches which do not maximize the payout to the acting player are pruned. While
this assumption greatly simplifies the analysis, it is not necessarily accurate in all scenarios.
Notably, it does nothing to account for irrational decisions, or malicious players who seek not
to maximize their own payout but rather to wreak havoc and decrease the payout to others.
A natural response for these behaviors is for a player to adopt of a risk-averse viewpoint, in
which they are willing to sacrifice some of their payout in order to minimize their risk later in
the game. In this way, a player seeks to maximize their worst case outcome, thus minimizing
the effects of an irrational or spiteful player. Through the remainder of this paper, we focus
on examining the results of risk-averse players using k-lookahead search.

1.1 Definitions and Notations

The strategic game G is defined as a tuple G(P ,S, {vi : i ∈ P}). P is the set of n players
{1, . . . , n}. The strategy space S is the Cartesian product (S1 × S2 × · · · × Sn), where each
Si is the set of strategies available for player pi. vi : S → R is the value function for player
i given a strategy profile from S. We assume the set of players P and the value functions
are independent of time, i.e. they do not change throughout the game. Thus, a node in the
game tree is defined by the strategy vector s ∈ S.

A player i ∈ P using lookahead search to move from s ∈ S in the game tree does so based
on the best child node. To be precise, suppose i is about to move from s and Ti is the local
search tree. First i assigns a valuation Πj(l) for each player j (including i) and each leaf

1



CS 6840 Final Project May 22, 2020

node l in Ti. Then for each remaining vertex v in Ti, player i evaluates its value for all
players, assigning values Πj(v) (intuitively, what i believes j’s value to be at v). We define
values recursively for player i (who is about to move at state v) as:

Πi(v) = max
v′∈C(v)

[ri,v + Πi(v
′)]

And at other states, Πi(v) = ri,v + Πi(v
′) where v′ is the state after the next player moves

(for leaves, we have instead Πi(l) = ri,l). For risk-averse player i, assume any non-moving
player j 6= i places a value of Πj(v) = −Πi(v) on node v. Intuitively, j maximizing their
value corresponds to choosing the states which have the worst value for i. From this, i is able
to compute lookahead payoff Πi(s

′) for all children of the root of Ti and move accordingly.
This allows us to define a lookahead improving move s′i for player i at state s ∈ S to be one
where Πi(s) ≤ Πi(s

′
i, s−i), and a lookahead best response for i at state s to be si such that

∀s′i ∈ Si : Πi(si, s−i) ≤ Πi(s
′
i, s−i).

It is important to distinguish what j would do in i’s opinion and what j actually would do.
Suppose player i moved from s to s′ so that player j is about to move at node s′, and j
applies the same lookahead procedure with a new search tree Tj. Player i may not be able
to fully simulate j’s computation so that even if both players are aware of j’s mechanism,
they may compute different moves. For example, if both i and j use k-lookahead search,
then i can only perform a k− 1 lookahead search when considering j’s move, while j can do
a k-lookahead search when it is actually her move.

1.1.1 Path model vs. Leaf model

For games such as chess where only the final state matters, we have ri,s = 0 for all i and s.
There is no intermediate gain associated with any node before the game ends, so the value
of a node is entirely determined by the values of its child nodes. We call models associated
with such games the leaf model since players are playing to reach a desired leaf in the local
search tree (intuitively, the values of the leaves should correspond to estimates of the value
of their descendant leaves on the game tree). On the other hand, for games such as business
investment, each business invested has its short-term payoff as well as long-term payoff. In
these games different paths leading to the same node may have different values. Players
strive to pick the path with highest value for themselves. These models are called the path
model.

1.1.2 Equilibrium vs. Dynamics

Two ways of studying the performance of lookahead search are via equilibria and via dy-
namics. A lookahead equilibrium, strategy profile where each player plays a lookahead best
response. The price of anarchy is defined as the ratio of the worst lookahead equilibrium
and the global optimal social welfare. A lookahead dynamic is a walk on the state graph G,
where nodes are set of states and there is an edge from s to s′ with label i if s′ is the result of
i switching to a lookahead best response at s. The price of anarchy for lookahead dynamics
is defined as the worst ratio between expected social welfare on a random walk polynomial
in G and the global optimal social welfare. It may be more enlightening to study lookahead
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dynamics, as equilibria are not guaranteed to exist; and if they do, similar techniques for
proving bounds on dynamics often apply to equilibria as well.

1.1.3 Order of Moves

Lookahead can also depend on the order in which players move, as this affects the shape
of the game tree. When there are more than two players, we must distinguish between the
worst-case and average-case models; in the former, the player assumes that the sequence of
players chosen to move is adversarial. In the latter case, the player assumes that at each
round, a player is selected to move uniformly at random (this may lead to consecutive moves
by the same player). We focus our attention here on the average-case model.

1.2 Paper Layout

In Section 2, we discuss the Cournot model for duopolistic competition. We categorize
optimal risk-averse lookahead play, and consider the long term behavior of competition
between risk-averse firms, as well as between a risk-averse and a risk-neutral firm. In Section
3, we discuss atomic selfish routing. We begin by proving a price of anarchy bound on a
risk-averse 2-lookahead equilibrium. Finally, we establish a constant bound on the price of
anarchy for lookahead dynamics with risk-averse players. In Section 4 we discuss limitations
of our work and possible extensions.

2 Cournot Competition

We consider the competition of firms in a duopolostic market under the Cournot model [2].
Under this model, we assume that the price of the item is a function of the market saturation.
To be more concrete, let p be the production quantity of Company 1 and q be the production
quantity of Company 2. Assume that it costs each company c to produce one item1, and
that d represents the market demand for the item. Then, the price for each item is set to
d− p− q, so that the utility to the companies can be represented as

u1(p, q) = p(d− p− q − c) u2(p, q) = q(d− p− q − c),

the profit to each company at these production levels. Without loss of generality, we can
assume d− c = 1, so that

u1(p, q) = p(1− p− q) u2(p, q) = q(1− p− q).

By setting q = 1
3
, we see that company 1 can maximize their profits by setting p = 1

3
, so

by symmetry (1
3
, 1
3
) is a Nash equilibrium, the unique equilibrium in pure strategies. We

measure social welfare in this game as SW (p, q) = p + q, the fraction of the demand which
is satisfied. The social welfare at this equilibrium is 2

3
, and each company has profit 1

9
.

1Economics of scale make it unreasonable to assume that the marginal cost of production is fixed. How-
ever, this assumption was made in Cournot’s original model, so we adopt this view here.
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2.1 Applying a Risk-Averse k-Lookahead Strategy

In order to apply lookahead strategies to Cournot Competition, we must make it into a
sequential game. To do this, we assume that the companies take turns adjusting their
prices, realizing their profit between each adjustment. A risk-neutral, or utility maximizing,
company will seek to maximize their overall profits summed over all rounds (this is an
example of the path model) and will assume that the other company is doing the same. A
risk-averse company will seek also seek to maximize their overall profits, but will assume that
the other company is trying to maliciously run them out of business. Since a company can,
theoretically, raise their production arbitrarily high, making the price of the good negative,
there is no per se “worst-case” outcome for the risk-averse company to compute. Therefore,
we make the additional assumption that neither company will ever act in a way which causes
them to lose money in a round.2 Thus, the risk-averse company will assume that the other
company will always respond in a way that makes total production 1 (and thus makes profits
0). The resulting strategy is discussed in the following lemma.

Lemma 1. Assume that Company 1 is employing a risk-averse (as described above) k-
lookahead search. Then, if Company 2 currently has Production q, Company 1 will set their
production to p = j

j+1
(1− q) where j = dk

2
e.

Proof. We argue by induction on k that this is the optimal strategy according to k-lookahead
and that Company 1 will anticipate earning j

2(j+1)
(1−q)2 during the lookahead period. Note

that it is sufficient to argue for k odd because in every even round (where Company 2 adjusts
their production) Company 1 will anticipate making no profit. As a base case, the myopic
best response of Company 1 is the maximize their immediate profit. By applying univariate
calculus, we see that

0 =
∂

∂p

[
p− p2 − pq

]
= 1− 2p− q =⇒ p =

1

2
(1− q),

and Company 1 anticipates earning a profit of

1− q
2

(
1− 1− q

2
− q
)

=

(
1− q

2

)2

.

Now, consider a k lookahead strategy. If Company 1 responds by producing p, then in the
next round Company 2 would produce 1− p. Applying the inductive hypothesis, Company
1’s best (k − 2)-lookahead strategy from this point would earn them (j−1)

2j
p2 over the next

k − 2 rounds. Therefore, Company 1 anticipates earning

p(1− p− q) +
(j − 1)

2j
p2

2This assumption may not be entirely accurate. There are numerous examples of predatory pricing,
instances where companies lower prices beyond their profitable capacity in order to force competition out of
business, in modern economics. For more information about predatory pricing and mechanisms to alleviate
it, see [3].
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over the k rounds. Again, by univariate calculus, we find that

0 =
∂

∂p

[
p(1− p− q) +

(j − 1)

2j
p2
]

= 1− 2p− q +
j − 1

j
p =⇒ p =

j

j + 1
(1− q),

and Company 1 anticipates earning

j

j + 1
(1− q)

(
1− j

j + 1
(1− q)− q

)
+

(j − 1)j

2(j + 1)2
(1− q)2

=
j

(j + 1)2
(1− q)2 +

(j − 1)j

2(j + 1)2
(1− q)2

=
j

2(j + 1)
(1− q)2,

completing the induction.

2.2 Two Risk-Averse Companies

We can use this lemma to determine the behavior of companies utilizing this risk-averse
lookahead strategy. First, suppose that both of the companies are using this strategy with
the same lookahead window k. Then, their productions will each quickly converge to the
fixed point of the map x 7→ j

j+1
(1− x). Doing the algebra, we have

(j + 1)x = j(1− x) =⇒ jx+ x = j − xj =⇒ x =
j

2j + 1
.

Note that when k = 1 (so j = 1), we recover the myopic equilibrium (1
3
, 1
3
), and as k →∞,

the production by each company approaches 1
2
. Therefore, the risk aversion of the companies

leads to an overall increase in social welfare (that is, an increase in production) at the expense
of company profitability. Intuitively, when one company acts under the assumption that the
other is going to saturate the market, it is in their best interest to ramp up production now
to reap as much in short-term profits as they can.

Next, we consider the case where both companies are risk-averse, but they have different
lookahead windows. Without loss of generality, we let k denote Company 1’s lookahead and
k′ denote Company 2’s lookahead with k > k′ (correspondingly, we define j, j′ as above).
Then, the production levels p and q will converge to the solution of the system

p =
j

j + 1
(1− q) q =

j′

j′ + 1
(1− p),

which can be computed to be

p =
j

j + j′ + 1
q =

j′

j + j′ + 1
.

Note that when j = j′, this captures the fixed point solution from above. Moreover, since
j > j′, p > q, so Company 1 will reap a greater profit than Company 2. This confirms
the intuition that a risk-averse company with greater capacity for market prediction should
realize greater profits.
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2.3 Risk-Averse versus Risk-Neutral Companies

As a final application of the Cournot model, we consider a risk-neutral company competing
with a risk-averse company. Specifically, we focus on the case where the companies have
the same lookahead window k and determine which mindset results in greater profitabil-
ity. We utilize the recurrence in Lemma 2.1 from [1] to determine the optimal lookahead
strategy for the risk-neutral company and the above lemma to reason about the risk-averse
company.

In the case where k = 2, Company 1 (the risk-averse company) best responds to Company 2
(the risk-neutral company) producing q units by producing p = 1

2
(1− q) units. Company 2

best responds to Company 1 producing p units by producing q ≈ 0.30508− 0.48305p units.
A sequence of these responses converges to the production levels (p, q) ≈ (0.43854, 0.12293).
For any k ≥ 3, we have

p ≥ 2

3
(1− q) q ≤ 0.298− 0.478p,

for which a sequence of best responses will eventually drive q → 0 and p → j
j+1

. There-
fore, for any k ≥ 2, a risk-averse lookahead strategy results in greater profitability than
a risk-neutral strategy. Moreover, having even one risk-averse company ensures a greater
production level (and thus greater social welfare) than 2 myopic companies and also ensures
a greater production level than 2 risk-neutral companies for k ≥ 5.

3 Atomic Selfish Routing

We now examine the atomic selfish routing game. This game consists of a directed graph
G = (V,E), and n players, each of whom wishes to route 1 unit of flow from si to ti along a
path Pi. The paths together define a flow f ; we assume that each edge has a linear latency
λe(fe) = aefe + be with ae, be ≥ 0. The total latency of a flow f (i.e. the social cost) is then
denoted l(f) =

∑
e∈E λe(fe)fe; likewise, denote a player’s latency as li(f) =

∑
e∈Pi

λe(fe).
Again, to apply lookahead, we turn this into a sequential game by allowing players to update
their choices over time. Like the original paper, we will consider this game under 2-lookahead
in the leaf model. We use an analogous definition of risk-aversion here: players want to
minimize their own latency, under the assumption that all other players in the game are
acting to maximize it.

3.1 Price of Anarchy for Lookahead Equilibrium

We present a proof based on largely based on that of Theorem 4.1 in [1]. Note that this
proof itself is based on work in Awerbuch, Azar, Epstein [4].

Theorem 2. In the average-case 2-lookahead model with risk-averse players, the price of
anarchy for a lookahead equilibrium is at most 4.

Proof. Let f be a flow in lookahead equilibrium and let f ∗ be an optimal flow. Let Pj denote
the path which j takes in f and P ∗j the same for f ∗. Let J(e) be the set of players using edge
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e in f , and J∗(e) the equivalent for f ∗. Note that at a 2-lookahead equilibrium, j prefers
playing Pj to P ∗j , i.e. it must be that the worst outcome from a move after choosing Pj is
at least as good as the worst from a move after P ∗j . In particular, the former has latency
no less than that obtained when choosing Pj if the next player remains at their current
position. The worst possible outcome from choosing P ∗j is no worse than if another player
who originally shared no edges with P ∗j moves entirely onto the path. This gives:∑

e∈P ∗j

ae(fe + 2) + be ≥
∑
e∈Pj

aefe + be

Now sum over all players:∑
j

∑
e∈P ∗j

ae(fe + 2) + be ≥
∑
j

∑
e∈Pj

aefe + be =
∑
e∈E

(aefe + be)fe =
∑
e∈E

λe(fe)fe

We reverse this inequality and continue:∑
e∈E

λe(fe)fe ≤
∑
j

∑
e∈P ∗j

ae(fe + 2) + be

=
∑
e∈E

(ae(fe + 2) + be)f
∗
e

≤
∑
e∈E

aefef
∗
e + (2ae + be)f

∗
e

Now note that since f ∗e ∈ Z≥0, we have that f ∗e
2 ≥ f ∗e .

≤
∑
e∈E

aefef
∗
e + 2aef

∗
e
2 + bef

∗
e

≤
∑
e∈E

aefef
∗
e + 2

∑
e∈E

λe(f
∗
e )f ∗e

Applying the Cauchy-Schwartz inequality to the first term:

≤
√∑

e∈E

aef 2
e

√∑
e∈E

aef ∗e
2 + 2

∑
e∈E

λe(f
∗
e )f ∗e

≤
√∑

e∈E

λe(fe)fe

√∑
e∈E

λe(f ∗e )f ∗e + 2
∑
e∈E

λe(f
∗
e )f ∗e

Take ρ =
√∑

e λe(fe)fe∑
e λe(f

∗
e )f
∗
e
; note that ρ2 is the PoA if f is the worst lookahead equilibrium.

Dividing the resulting inequality by
∑

e∈E λe(f
∗
e )f ∗e gives ρ2 ≤ ρ + 2. Thus, ρ ≤ 2 and the

price of anarchy is at most 4.

In particular, we may compare this to the price of anarchy bound of (1 +
√

5)2 ≈ 10.472 for
risk-neutral players in [1]. Since the optimal social cost remains the same, we have a tighter
bound on social cost at lookahead equilibrium for risk-averse players.
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3.2 Price of Anarchy for Lookahead Dynamics

We now show that the price of anarchy for lookahead dynamics is also bounded by a constant
when players are risk-averse. The proof once again follows similarly to that in [1] with a
number of lemmas, but we may use risk aversion to improve the bounds. This proof also
draws heavily on work in Goemans, Mirrokni, Vetta [5].

Lemma 3. If player i makes a lookahead-improving move from path Pi to P ′i which changes
the flow from f to f ′i , then li(f

′
i) ≤ 2li(f)

Proof. Note that li(f
′
i) is at most i’s worst-case latency after a move from f ′i . But this is at

most the worst-case latency if i were to remain on Pi, which in turn is bounded by:∑
e∈Pi

ae(fe + 1) + be ≤
∑
e∈Pi

2aefe + be ≤ 2li(f)

Here, the first term assumes that the next player to move did not share any edges with Pi
and moved entirely onto the path in the next turn.. Thus, we have li(f

′
i) ≤ 2li(f).

Lemma 4. Let f be the current flow and choose at random a player to make a lookahead
best response. The resulting flow f ′ satisfies E [l(f ′) | f ] ≤ (1 + 3

n
)l(f).

Proof. Let f ′i denote the flow obtained by player i making a lookahead best response. We
first appeal to Lemma 4.2 of [5], which states that if i changes its path from Pi to P ′i to give
a new flow f ′i , then l(f ′i) ≤ l(f) + 2li(f

′
i) − li(f) (when delays are linear). It follows from

Lemma 3 that l(f ′i) ≤ l(f) + 3li(f). Thus,

E [l(f ′) | f ] =
1

n

∑
i

l(f ′i)

≤ 1

n

∑
i

(l(f) + 3li(f))

= l(f) +
1

n

∑
i

3li(f)

= l(f) +
3

n
l(f),

We prove now our final lemma:

Lemma 5. Let f be the current flow. Choose a player at random to make a lookahead
best response, resulting in flow f ′. Then we have either E [l(f ′) | f ] ≤ (1 − 1

2n
)l(f) or

l(f) < (2 + 2
√

3)OPT.

Proof. Let f ′i denote the flow which occurs when i moves to a lookahead best response. We
consider the following cases:
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Case 1: 4
∑

i li(f
′
i) ≤ l(f).

E [l(f ′) | f ] =
1

n

∑
i

l(f ′i)

≤ 1

n

∑
i

(l(f) + 2li(f
′
i)− li(f)) (Lemma 4.2 of [5])

≤ 1

n

∑
i

(l(f) +
1

2
li(f)− li(f))

= (1− 1

2n
)l(f)

Case 2: 4
∑

i li(f
′
i) > l(f).

Let f ∗ denote an optimal flow and let P ∗i denote player i’s path in this flow. Also let J∗(e)
be the set of players on edge e in f ∗. Since P ′i is a lookahead best response, we must have∑

e∈P ∗i
ae(fe + 2) + be ≥ li(f

′
i) (this is by the same reasoning as in Theorem 2). Thus,

l(f) < 4
∑
i

∑
e∈P ∗i

ae(fe + 2) + be

= 4
∑
e∈E

∑
i∈J∗(e)

ae(fe + 2) + be

= 4
∑
e∈E

(ae(fe + 2) + be)f
∗(e)

≤ 4
∑
e∈E

aefef
∗
e + 8

∑
e∈E

(aef
∗
e + bef

∗
e )

Applying Cauchy-Schwarz to the first term and noting again that f ∗e
2 ≥ f ∗e for the second:

≤ 4

√∑
e∈E

aef 2
e

√∑
e∈E

aef ∗e
2 + 8

∑
e∈E

(aef
∗
e + be)f

∗
e

≤ 4
√
l(f)l(f ∗) + 8l(f ∗)

If we take ρ =
√

l(f)
l(f∗)

, we may rewrite this as ρ2 < 4ρ + 8. This gives a bound of l(f) <

(2 + 2
√

3)OPT.

Theorem 6. In the average-case 2-lookahead leaf model, the price of anarchy for lookahead
dynamics by risk-averse players is bounded by a constant. Starting from a flow with la-
tency C, the expected latency after O(n log C

OPT
) random lookahead best responses is at most

27.5 OPT.

Proof. With lemmas 4 and 5 in hand, the rest of the proof follows as in Theorem 4.5 of [5].
We omit the details of the proof as they are identical, up to the values of the constants in
our lemmas. We find instead that after j ≥ n log 1

ε
log C

OPT
steps, the expected social cost is

at most (27.32 + ε)OPT.
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4 Discussion

We note some limitations and possible extensions of our work. One fairly heavy restriction
is that throughout our work, we assumed that the mechanisms of all players were common
knowledge. It may be interesting to consider the effect of uncertainty in players’ decisions, as
well as situations with more heterogeneous players, as most of our examples dealt exclusively
with risk-averse players.

There are also more nuanced approaches to model risk-averse players. For example, our
model of a risk-averse player is one who assumes that all other players are acting in their
worst interest, with little regard to their own utility (e.g. in Cournot competition, the
adversarial company is expected to move so that they end up with 0 profit). It may be that
a more realistic model would have other players acting against them, but not in such a way
so as to cause themselves more harm than they would the target. Additionally, one could
implement a model where a risk-averse player places slightly more faith in other players to
not play antagonistically, and place valuations on the game tree such that nodes with more
high-value children are valued more highly than those with fewer.

For atomic selfish routing, we note that similar analysis may be applied if we were to consider
the path model instead of the leaf model. Additionally, Theorem 2 would hold with the same
proof were we to consider the worst-case move order rather than average case. However, the
proof for Theorem 6 would fail if we were to examine the worst-case model rather than average
case; in particular, Lemma 4 and Case 1 of Lemma 5 rely heavily on this assumption. It is
not clear whether there exists a weakening of these lemmas which hold for the worst-case
move order model, yet are still strong enough to prove an analogue of Theorem 6.
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