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1 Introduction and Definitions

Due to the tremendous increase in available computational power in recent years, people are
becoming more interested in problems that involve larger data sets. As a result, even algorithms
that are linear in the input size n can be prohibitively expensive in computation time. So, the
general problem is determining if a problem’s solution can be found based on a small fraction of
data. The conflict between a large data set and a limited amount of time gives the motivation
to explore the world of algorithms which run in o(n) time, or sublinear time algorithms.

For most problems, no algorithms can produce a precise solution in sublinear time. The reason
is simply that the solution can be altered by changing a single element. For example, if we
want to compute the arithmetic mean of a set of real numbers, it is necessary to inspect each
element of the set. Indeed, this holds even for many decision problems. As a result, sublinear
time algorithms often involve randomization and approximation to generate a inexact solution.
However, a fast approximation is sufficient for many problems when an exact solution is com-
putationally infeasible. For example, if we want to track properties of a large network which is
rapidly changing, then by the time an exact solution is available it may no longer be valid.

In order to reason about sublinear time algorithms, we need a useful and widely applicable
definition for what is a “good approximation” for a property. Formally, a property is a collections
of inputs P ; if an input f ∈ P , we say that “f satisfies property P .” For instance, if we wanted
to test if a graph was dense, we would consider the property P of all dense graphs. Now, consider
g : X → Y as an function we wish to test, where X is a domain of dimension d representing the
objects we would like to test and Y is its range. Letting ε > 0, we say g is ε-close to satisfying
a property P if there is a function h ∈ P such that g and h are different in at most εd places.
Otherwise, g is ε-far satisfying P . Continuing with the example of dense graphs, consider a
graph with the edge characteristic function e : [n]2 → {0, 1} where n is the number of vertices
and [n] = {1, . . . , n}. Then e would be ε-close to dense if there were only εn2 edges not in the
graph.

The general strategy for forming sublinear time algorithms will be to develop an algorithm called
a property tester which runs in sublinear time. Loosely speaking, a property tester is a method
which passes with a high probability if the property is satisfied, and fails with a high probability
if the property is not satisfied. More formally, consider a property P , an input g of size d, and
ε > 0. A property tester must pass with probability of at least 2/3 if g ∈ P and must fail with
probability of at least 2/3 if g is ε-far from P . We note the value 2/3 is arbitrary, and it could be
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changed to any constant strictly greater than 1/2; performing the test repeatedly can be used
to obtain an success rate arbitrary close to 1 (more importantly, the number of repetitions is
sufficiently small so as not to increase the runtime asymptotically). A sublinear time algorithm
to test if g satisfies P would then consist of performing the property tester O(log β−1) to say
that g is ε-close to satisfying P with probability of error β by taking the majority answer of the
property tester.

It is often the case that property testers can behave much better than is strictly required. We
say a property tester has 1-sided error if it passes with probability 1 if g satisfies property P .
The speed of a property tester will be determined by the “query complexity”, i.e. the number
of queries of the function g the property tester performs. If the number of query complexity
is independent of the input size of g, then the property is called easily testable. The highest
standard we consider for sublinear-time algorithms within this paper consist of easily testable
properties with 1-sided error.

Unless otherwise stated, all information within this paper can be found within the reference
[12].

2 Examples

We highlight some interesting applications in a variety of fields of practical interest. In addition,
we highlight some of the quirks of working with sublinear time algorithms, as well as common
approaches to constructing them and challenges which arise due to the restrictive nature of this
constraint.

2.1 Algebraic Examples

We now turn to a homomorphism testing, a problem with motivations due to program testing
and probabilistically checkable proofs. Given groups D and R as well as an oracle for function
f : D → R, is it possible to tell if f is a homomorphism? It is clear that querying the oracle
once for every element of D suffices to answer the question; it is also necessary. Indeed, given
any homomorphism f , one may construct f ′ which differs from f at exactly one x ∈ D. Instead,
consider the property testing version of the same question, where, on input ε, the property
tester should output “pass” with probabliity at least 2

3 if f is a homomorphism and “fail” with
probability at least 2

3 if f is ε-far from a homomorphism, i.e. for every homomorphism g : D → R,
f and g disagree on more than ε|D| inputs. We may try to construct such a property tester by
identifying some set of relationships which must hold everywhere for a homomomorphism. Then
query the oracle to see if an appropriate number of these relationships holds; if not, then we
may safely output “fail.” We outline this method below, restricting our attention temporarily
to the case where D = R = Zq for large q ∈ Z.

It is not difficult to show that the set of homomorphisms over Zq is exactly the set of functions
that satisfy ∀x ∈ Zq, f(x+1)−f(x) = f(1). So we may construct a property tester which checks
whether this holds for most x ∈ Zq. However, this does not suffice, as there exist functions which
are far from any homomorphism, but will pass the property tester with high probability. The
example given in [12] is that of g(x) = x mod d√qe, which passes the test on a 1− 1√

q fraction

of the domain (at all x except for those which are 0 mod d√qe).
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Instead, we may construct a property tester based on a different characterization of homo-
morphisms. The set of homomorphisms over group D can also be characterized as the set
{f : ∀x, y ∈ D, f(x+y) = f(x)+f(y)}. It then appears reasonable to test whether this relation-
ship holds for most x, y ∈ D. Indeed, one can show that, for any δ < 2

9 , if f(x+y) = f(x)+f(y)
for at least 1−δ fraction of x, y ∈ D, then there exists a homomorphism g such that f is δ/2-close
to g.

Since this holds, we may construct a property tester based on this characterization by sampling
enough pairs x, y and outputting “pass” if and only if every pair satisfies f(x+y) = f(x)+f(y).
All homomorphisms must always pass, and if f is ε-far from homomorphism, then a fraction of
at least 2ε of all pairs x, y ∈ D must fail. Testing O(1/ε) provides a sufficiently high probability
of failure for such f .

Both of the mentioned characterizations of homomorphisms are by local constraints, i.e. they
only rely upon a small number of values of the function.

The notion that the second characterization is useful for constructing property tests while the
first is not can be formalized by the notion of a robust characterization. A characterization is
(ε, δ)-robust if any function satisfying the constraint with probability at least 1− δ is ε-close to
some function g that satisfies all of the constraints. Informally, a characterization is robust if
the “for all” quantifier can be replaced with a “for most” quantifier and still only characterize
functions close to the desired set.

Application in error correcting code

Fast property test over algebraic structures has significant applications in telecommunication.
Coding theory, in particular, cares about membership of vector space over finite fields and their
sub-spaces. Often, it is desirable if a corrupted string can be detected fast so that the receiver
can send a request for another copy. In the context of sublinear time algorithms, the question
can be formulated as if there exists codes and property tester such that the property of being
a codeword is easily testable. And if there are such codes, do they have good rates and error
correcting properties? Before discussing which codes are locally testable (easily testable), let us
define some basic concepts in coding theory.

A set of symbols Σ is called the alphabet. A string s of length n is an element of Σn, where
s(i) denotes the ith character in string s. The Hamming distance l between two strings w,w′

of length n is the number of indexes i such that w(i) 6= w′(i). The relative distance d is the
quotient of Hamming distance and string length d = l

n . The rate of a code is the ratio of the

length of a message and the length of a codeword k
n . A code is (q, δ) locally testable if there

exists a recursive function given random access to q queries such that codewords are mapped to
1, and strings δ−far from a codeword are mapped to 0 with probability higher than 1

2 [13].

The question of whether or not locally testable code exists is fairly simple. It turns out many
of the well known codes are locally testable! For example, the Hardmard code, which encodes a
message x from F k2 into F 2k

2 by taking inner product of 〈x, y〉 over all y ∈ F k2 is locally testable.
The fact that Hardmard code is locally testable shouldn’t be surprising. Let f be the encoding
function, then by the linearity of inner product we have f(x) + f(y) = f(x + y), which is a
property of homomorphism. Moreover, Reed-Muller codes, which are widely used in wireless
data transmission, as well as Reed-Solomon codes, which are used in optical discs, are all locally
testable.

The question of how efficient locally testable codes can be is more difficult. There are locally
testable codes “near linear” in the following sense[5]:

3



CS6820 Shawn Ong, Zhen Zhang, Max Ruth

1. Codes with rate n = k1+ε for arbitrary positive ε.

2. Codes with rate n = k1+ε(k) where ε(k) is a function goes to 0 such as 1
log log k

The current state of the art result is the construction of locally testable codes with n =
O(kpoly(logk)). However, the problem if there exist locally testable codes with n = O(k)
remains open.

The last question is what are the properties of a code that makes it locally testable? Intuitively,
linear codes with large relative distances between codewords and a low rate are likely to be
locally testable, simply because codewords are likely to be locally distinct from other strings.
Multiple studies have shown this is indeed the case[12]. Hardmard code, for example, has a rate
of k

2k
and minimal Hamming distance 2k−1. The other intuitive case is when there is a strong

local constraint for codewords. More specifically, codes generated by low-degree polynomials
over finite fields turn out to be locally testable. These codes include Reed-Muller Code and
Reed-Solomon Code.

2.2 Graph Property Testing

In this section, we will consider the testing of graph properties. In order to consider this general
question, we must first define what it means for a graph G to be ε-far away from from satisfying
a graph property P . For now, we consider dense graphs; we will say G is ε-far from satisfying
P if there is a graph G′ that satisfies P such that G and G′ both have n vertices and differ by
at most εn2 edges. Note that, since the graph is dense, we will consider sublinear time to be
o(n2).

Given a graph property, a good initial approach would be the following algorithm:

1. Choose, at random, a constant number of the vertices of G to induce a subgraph.

2. Test the induced subgraph for the property P .

3. If the subgraph has the property, pass the test. Otherwise, fail.

We will refer to an algorithm with this design as a “natural algorithm”. All of the examples
given later within this section are performed via natural algorithms. It is clear that if the natural
algorithm acts as a property tester, then that property is easily testable.

Remarkably, graph properties which are easily tested via natural algorithms with 1-sided error
can be completely characterized. Consider a graph G and property P . We say that P is
hereditary if for any G which satisfies P , the graph induced after any vertex of G is removed
also satisfies P . Furthermore, we say P is semi-hereditary if there exists another hereditary
property H such that:

1. if G satisfies P then G also satisfies H, and

2. if ε > 0, n > M(ε) for some function M , and G is ε-far from satisfying P , then H also is
not satisfied.

In other words, this definition of semi-hereditary gives a notion of being “almost hereditary” by
comparing P to another hereditary property H. With this, we may give the following theorem:
P is easily testable by a natural algorithm with 1-sided error if and only if P is semi-hereditary.
The proof of this theorem is given in [1], but is too involved for this project.
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An example of an easily testable property of a graph is the existence of triangles. A graph G is
said to be triangle-free if no induced subgraphs are isomorphic to K3. The property tester for
being triangle-free follows from the following Lemma:

Triangle Removal Lemma [12] There exists a function q : (0, 1) → (0, 1) such that if G is
ε−far from being triangle-free, then G contains at least q(ε)n3 triangles.

The protocol of the tester is the following: for any ε > 0, sample a set S = 9
q(ε) triples of vertices.

Pass the test if none of them are triangles, and fail the test if any of them is a triangle. Clearly,
this tester has a one-sided error because all triangle-free graphs must pass. If G is ε−far from
triangle-free, then the given lemmas shows G contains at least q(ε)n3 triangles. The probability
of 9 triplets having no triangles is less than 1

2 . However, the function q is mysterious. There
are upper bounds for q in the form of a tower of exponents of heights poly(1/ε), and obtaining
better upper bounds of q is a major open problem [12].

Other graph properties that are testable in constant time (easily testable) include k-colorability
and partition problems of fixed order. Just like the case of triangle-freeness, the query complexity
of k-colorability in terms of ε remains open.

The results above apply generally to dense graphs, i.e. graphs containing Θ(n2) edges. However,
several applications involving large sparse graphs, such as social networks or transportation
models, also propose interesting questions for the feasibility of sublinear time algorithms. For
this section, we will be primarily interested in graphs where every vertex has degree bounded
above by a fixed integer d. Whereas in the dense graph applications, we use the adjacency
matrix representation, sparse graphs are more efficiently represented using adjacency list, i.e.
the graph is represented by a list of neighbors for each vertex. The tester can then query the
representation of G by asking for the ith neighbor of any vertex v, for 1 ≤ i ≤ d. Again, we must
amend our working definition of ε-closeness to work in this framework. We say that an n-vertex
graph G of degree bounded by d is ε-far from G′ if at least εdn edges need to be added/deleted
to obtain a graph isomorphic to G′ (in particular, compare this to the εn2 for dense graphs).
Then G is ε-far from satisfying property P if G is ε-far from every graph of bounded degree d
satisfying P. Likewise, we will revise the definition for sublinear time to be o(dn).

Unlike in dense graphs, the fact that a property is hereditary does not automatically imply
that sublinear time algorithms exist for it. In particular, if a dense graph is ε-far from being
triangle-free, then it must contain a non-k-colorable subgraph on c(ε) vertices (this result is due
to Rödl and Duke [14]). It turns out that this is not the case in sparse graphs; even for k = 2,
a d-regular expander of logarithmic girth is far from being bipartite, while every set of O(log n)
vertices has no cycle and is therefore bipartite. In fact, for any k ≥ 3, there are graphs which
are far from being k-colorable, but all sets of Ω(n) vertices span a 3-colorable graph [4]. In this
case, this requires any 1-sided error tester for 3-colorability must have query complexity Ω(n).
So in bounded-degree graphs, the relation between local properties and global properties is not
so strong as it is in dense graphs. Even 2-colorability requires query complexity Ω(

√
n) [6]; the

fact that this is greater than constant implies that it is impossible for efficient testing algorithms
to exist for arbitrary hereditary properties in sparse graphs (in contrast to the result above for
dense graphs).

However, that is not to say that no such sublinear time algorithm exists. Benjamini, Schramm,
and Shapira [2] show that planarity can be tested with a constant number of queries, albeit with
2-sided error; moreover, their proof demonstrates that any minor-closed property (i.e. closed
under the removal of edges or vertices and under contraction of edges) is testable in bounded-
degree graphs. Taking the example of high-girth expanders and planarity, it is impossible to
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achieve 1-sided error with o(log n) queries (such graphs are far from planar, but do not have

small non-planar graphs due to high girth). The query complexity achieved by [2] is 22
2poly(1/ε)

,
which was later improved to 2poly(1/ε) in [7].

2.3 Approximation Algorithms

In addition to property testing, sublinear time algorithms also lend themselves to the application
of approximating classical optimization problems. As before, it is often impossible to exactly
solve such problems in sublinear time; in the context of approximation algorithms, the necessary
freedom is provided by allowing the algorithm to output an answer which is approximate to the
optimal, i.e. within a additive or multiplicative factor of ε (this takes the place of the notion of
ε-closeness).

With recent progress in technology over the past few decades, distributed algorithms have quickly
gained steam as a research area. One may note the natural similarities between local distributed
algorithms and sublinear time algorithms – for example, local property testing can be easily
implemented by parallel computation. Indeed, Parnas and Ron [11] show that local distributed
algorithms and sublinear time algorithms are related in such a way that efficient distributed
algorithms for degree-bounded distributed networks can be used to construct sublinear time
approximation algorithms over these same networks.

As an illustrative example, consider the vertex cover problem on graphs of degree bounded by
d ∈ N. Suppose that we have access to an oracle that, when queried on vertex v, indicates
whether or not v is in the vertex cover. Sampling O(1/ε2) queries is sufficient to get an εn
additive approximation to the optimal vertex cover. The only issue to consider is how to obtain
such an oracle; it turns out that, if there is a local distributed algorithm (i.e. it runs in time
independent of the number of vertices) for vertex cover, then such an algorithm can be used to
construct this oracle. For any constant k, the k-neighborhood of any vertex v, is of constant size
O(dk). So we can simulate the run of any processor v in the distributed algorithm by another
which is sufficiently close enough to affect v’s computation (here, it is assumed that the vertex
cover is computed on the graph of the distributed network, where each vertex is a processor).
Parnas and Ron then use a local distributed c-approximation algorithm to get an algorithm to
approximate vertex cover. The approximation algorithms constructed in this manner are neither
multiplicative nor additive approximations. Instead, we say that ŷ is an (α, β)-approximation
to y if y ≤ ŷ ≤ αy + β; this particular algorithm produces a (c, εn)-approximation which has
query complexity dO(log(d/ε3)) (in particular, this is independent of n), which was later improved
by Marko and Ron [8] to dO(log(d/ε)), for a (2, εn)-approximation.

Other work following the same idea but constructing a different class of local distributed algo-
rithms has led to improved approximation algorithms which incur only a polynomial dependency
on d and ε. Nguyen and Onak [10] demonstrate an algorithmic technique that greedily and locally
simulates the standard sequential greedy algorithm. Recall the standard greedy 2-approximation
algorithm for vertex cover which finds an arbitrary maximal matching and returns the endpoints
of these edges as a vertex cover. The matching is greedily constructed by ordering the edges, and
adding each edge to the matching if neither of its endpoints are already matched. A first attempt
at implementing such an algorithm in the distributed setting may be the following:

1. Randomly assign distinct ranks r(u, v) to every edge (i.e. randomly fix an ordering).

2. Assign a processor to each edge (u, v).
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3. Each processor considers the edges adjacent to either u or v and recursively checks whether
any such edge with lower rank is already in the matching. If so, then (u, v) is not added
to the matching; otherwise, it is.

As this implements the greedy algorithm, the proof of correctness follows; we need only consider
the runtime. One issue that may arise is the potential for recursive calls to create chains of
linear length; Nguyen and Onak show that randomly choosing r ensures that these chains are
short for all processors with high probability. It follows that the expected query complexity
of one oracle call can be bounded with the observation that the probability of going down a a
recursion path of length k is bounded by the probability that the ranks of edges in the path
are strictly increasing, which is at most 1

k! . The number of vertices at distance k is at most dk,
so the numbe of explored vertices can be bounded by ed/d, giving expected query complexity
O(ed). A formal proof over several oracle calls is more involved, as different queries may share
some dependencies; the details may be found in [10].

It should also be noted that this basic framework readily applies to other greedy algorithms.
Nguyen and Onak use it to generate a (1, εn)-approximation algorithm for maximum matching
with runtime 2O(d)/ε2 (independent of n), by locally constructing increasingly better matchings.
Other problems for which this method produces a sublinear approximation algorithm include
set cover, dominating set, and maximum weight matching [10].

3 Conclusion

From [12], it seems a large class of problems involving approximation on graph properties can
be done in sublinear time. However, a problem having sublinear time approximation is a special
case rather than the norm. For example, some basic problems such as approximating the cost
of min-cost matching and min-cost bipartite matching are known to not have sublinear time
algorithms. In fact, any constant factor approximation requires O(n2) time even if the algorithm
is randomized [3].

Additionally, another computational model of algorithms in the same spirit is that of streaming
algorithms. Much progress has been made recently in this field, which finds applications in IP
network traffic analysis, mining text message streams, or a variety of other large data sets [9].
Broadly speaking, such algorithms concern a large amount of data such that each data point
arrives quickly and can only be seen a limited number of times, and the size of persistent memory
is significantly smaller than the entire dataset. Whereas sublinear time algorithms bound the
runtime to be asymptotically smaller than the input, streaming algorithms do not impose such
a strict runtime requirement, but rather bound memory usage as well (in addition to small per-
item runtime). In a sense, this weakens the restrictions of sublinear time algorithms, as such an
algorithm necessarily uses sublinear space; however, the streaming nature of the data prevents
operations that may be desired in sublinear time algorithms, for example, querying the same
vertex multiple times. Though it remains to be seen whether methods from the two fields lend
themselves to be easily applied in the other setting, both provide methods for which modern
algorithms may be applied to increasingly larger data sets.
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